/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/pacing/packet_router.h" #include #include #include #include #include #include "absl/types/optional.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/rtp_rtcp/source/rtcp_packet.h" #include "modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h" #include "modules/rtp_rtcp/source/rtp_rtcp_interface.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/time_utils.h" #include "rtc_base/trace_event.h" namespace webrtc { namespace { constexpr int kRembSendIntervalMs = 200; } // namespace PacketRouter::PacketRouter() : PacketRouter(0) {} PacketRouter::PacketRouter(uint16_t start_transport_seq) : last_send_module_(nullptr), last_remb_time_ms_(rtc::TimeMillis()), last_send_bitrate_bps_(0), bitrate_bps_(0), max_bitrate_bps_(std::numeric_limits::max()), active_remb_module_(nullptr), transport_seq_(start_transport_seq) {} PacketRouter::~PacketRouter() { RTC_DCHECK(send_modules_map_.empty()); RTC_DCHECK(send_modules_list_.empty()); RTC_DCHECK(rtcp_feedback_senders_.empty()); RTC_DCHECK(sender_remb_candidates_.empty()); RTC_DCHECK(receiver_remb_candidates_.empty()); RTC_DCHECK(active_remb_module_ == nullptr); } void PacketRouter::AddSendRtpModule(RtpRtcpInterface* rtp_module, bool remb_candidate) { MutexLock lock(&modules_mutex_); AddSendRtpModuleToMap(rtp_module, rtp_module->SSRC()); if (absl::optional rtx_ssrc = rtp_module->RtxSsrc()) { AddSendRtpModuleToMap(rtp_module, *rtx_ssrc); } if (absl::optional flexfec_ssrc = rtp_module->FlexfecSsrc()) { AddSendRtpModuleToMap(rtp_module, *flexfec_ssrc); } if (rtp_module->SupportsRtxPayloadPadding()) { last_send_module_ = rtp_module; } if (remb_candidate) { AddRembModuleCandidate(rtp_module, /* media_sender = */ true); } } void PacketRouter::AddSendRtpModuleToMap(RtpRtcpInterface* rtp_module, uint32_t ssrc) { RTC_DCHECK(send_modules_map_.find(ssrc) == send_modules_map_.end()); // Always keep the audio modules at the back of the list, so that when we // iterate over the modules in order to find one that can send padding we // will prioritize video. This is important to make sure they are counted // into the bandwidth estimate properly. if (rtp_module->IsAudioConfigured()) { send_modules_list_.push_back(rtp_module); } else { send_modules_list_.push_front(rtp_module); } send_modules_map_[ssrc] = rtp_module; } void PacketRouter::RemoveSendRtpModuleFromMap(uint32_t ssrc) { auto kv = send_modules_map_.find(ssrc); RTC_DCHECK(kv != send_modules_map_.end()); send_modules_list_.remove(kv->second); send_modules_map_.erase(kv); } void PacketRouter::RemoveSendRtpModule(RtpRtcpInterface* rtp_module) { MutexLock lock(&modules_mutex_); MaybeRemoveRembModuleCandidate(rtp_module, /* media_sender = */ true); RemoveSendRtpModuleFromMap(rtp_module->SSRC()); if (absl::optional rtx_ssrc = rtp_module->RtxSsrc()) { RemoveSendRtpModuleFromMap(*rtx_ssrc); } if (absl::optional flexfec_ssrc = rtp_module->FlexfecSsrc()) { RemoveSendRtpModuleFromMap(*flexfec_ssrc); } if (last_send_module_ == rtp_module) { last_send_module_ = nullptr; } } void PacketRouter::AddReceiveRtpModule(RtcpFeedbackSenderInterface* rtcp_sender, bool remb_candidate) { MutexLock lock(&modules_mutex_); RTC_DCHECK(std::find(rtcp_feedback_senders_.begin(), rtcp_feedback_senders_.end(), rtcp_sender) == rtcp_feedback_senders_.end()); rtcp_feedback_senders_.push_back(rtcp_sender); if (remb_candidate) { AddRembModuleCandidate(rtcp_sender, /* media_sender = */ false); } } void PacketRouter::RemoveReceiveRtpModule( RtcpFeedbackSenderInterface* rtcp_sender) { MutexLock lock(&modules_mutex_); MaybeRemoveRembModuleCandidate(rtcp_sender, /* media_sender = */ false); auto it = std::find(rtcp_feedback_senders_.begin(), rtcp_feedback_senders_.end(), rtcp_sender); RTC_DCHECK(it != rtcp_feedback_senders_.end()); rtcp_feedback_senders_.erase(it); } void PacketRouter::SendPacket(std::unique_ptr packet, const PacedPacketInfo& cluster_info) { TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("webrtc"), "PacketRouter::SendPacket", "sequence_number", packet->SequenceNumber(), "rtp_timestamp", packet->Timestamp()); MutexLock lock(&modules_mutex_); // With the new pacer code path, transport sequence numbers are only set here, // on the pacer thread. Therefore we don't need atomics/synchronization. if (packet->HasExtension()) { packet->SetExtension((++transport_seq_) & 0xFFFF); } uint32_t ssrc = packet->Ssrc(); auto kv = send_modules_map_.find(ssrc); if (kv == send_modules_map_.end()) { RTC_LOG(LS_WARNING) << "Failed to send packet, matching RTP module not found " "or transport error. SSRC = " << packet->Ssrc() << ", sequence number " << packet->SequenceNumber(); return; } RtpRtcpInterface* rtp_module = kv->second; if (!rtp_module->TrySendPacket(packet.get(), cluster_info)) { RTC_LOG(LS_WARNING) << "Failed to send packet, rejected by RTP module."; return; } if (rtp_module->SupportsRtxPayloadPadding()) { // This is now the last module to send media, and has the desired // properties needed for payload based padding. Cache it for later use. last_send_module_ = rtp_module; } for (auto& packet : rtp_module->FetchFecPackets()) { pending_fec_packets_.push_back(std::move(packet)); } } std::vector> PacketRouter::FetchFec() { MutexLock lock(&modules_mutex_); std::vector> fec_packets = std::move(pending_fec_packets_); pending_fec_packets_.clear(); return fec_packets; } std::vector> PacketRouter::GeneratePadding( DataSize size) { TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("webrtc"), "PacketRouter::GeneratePadding", "bytes", size.bytes()); MutexLock lock(&modules_mutex_); // First try on the last rtp module to have sent media. This increases the // the chance that any payload based padding will be useful as it will be // somewhat distributed over modules according the packet rate, even if it // will be more skewed towards the highest bitrate stream. At the very least // this prevents sending payload padding on a disabled stream where it's // guaranteed not to be useful. std::vector> padding_packets; if (last_send_module_ != nullptr && last_send_module_->SupportsRtxPayloadPadding()) { padding_packets = last_send_module_->GeneratePadding(size.bytes()); } if (padding_packets.empty()) { // Iterate over all modules send module. Video modules will be at the front // and so will be prioritized. This is important since audio packets may not // be taken into account by the bandwidth estimator, e.g. in FF. for (RtpRtcpInterface* rtp_module : send_modules_list_) { if (rtp_module->SupportsPadding()) { padding_packets = rtp_module->GeneratePadding(size.bytes()); if (!padding_packets.empty()) { last_send_module_ = rtp_module; break; } } } } #if RTC_TRACE_EVENTS_ENABLED for (auto& packet : padding_packets) { TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("webrtc"), "PacketRouter::GeneratePadding::Loop", "sequence_number", packet->SequenceNumber(), "rtp_timestamp", packet->Timestamp()); } #endif return padding_packets; } uint16_t PacketRouter::CurrentTransportSequenceNumber() const { MutexLock lock(&modules_mutex_); return transport_seq_ & 0xFFFF; } void PacketRouter::OnReceiveBitrateChanged(const std::vector& ssrcs, uint32_t bitrate_bps) { // % threshold for if we should send a new REMB asap. const int64_t kSendThresholdPercent = 97; // TODO(danilchap): Remove receive_bitrate_bps variable and the cast // when OnReceiveBitrateChanged takes bitrate as int64_t. int64_t receive_bitrate_bps = static_cast(bitrate_bps); int64_t now_ms = rtc::TimeMillis(); { MutexLock lock(&remb_mutex_); // If we already have an estimate, check if the new total estimate is below // kSendThresholdPercent of the previous estimate. if (last_send_bitrate_bps_ > 0) { int64_t new_remb_bitrate_bps = last_send_bitrate_bps_ - bitrate_bps_ + receive_bitrate_bps; if (new_remb_bitrate_bps < kSendThresholdPercent * last_send_bitrate_bps_ / 100) { // The new bitrate estimate is less than kSendThresholdPercent % of the // last report. Send a REMB asap. last_remb_time_ms_ = now_ms - kRembSendIntervalMs; } } bitrate_bps_ = receive_bitrate_bps; if (now_ms - last_remb_time_ms_ < kRembSendIntervalMs) { return; } // NOTE: Updated if we intend to send the data; we might not have // a module to actually send it. last_remb_time_ms_ = now_ms; last_send_bitrate_bps_ = receive_bitrate_bps; // Cap the value to send in remb with configured value. receive_bitrate_bps = std::min(receive_bitrate_bps, max_bitrate_bps_); } SendRemb(receive_bitrate_bps, ssrcs); } void PacketRouter::SetMaxDesiredReceiveBitrate(int64_t bitrate_bps) { RTC_DCHECK_GE(bitrate_bps, 0); { MutexLock lock(&remb_mutex_); max_bitrate_bps_ = bitrate_bps; if (rtc::TimeMillis() - last_remb_time_ms_ < kRembSendIntervalMs && last_send_bitrate_bps_ > 0 && last_send_bitrate_bps_ <= max_bitrate_bps_) { // Recent measured bitrate is already below the cap. return; } } SendRemb(bitrate_bps, /*ssrcs=*/{}); } bool PacketRouter::SendRemb(int64_t bitrate_bps, const std::vector& ssrcs) { MutexLock lock(&modules_mutex_); if (!active_remb_module_) { return false; } // The Add* and Remove* methods above ensure that REMB is disabled on all // other modules, because otherwise, they will send REMB with stale info. active_remb_module_->SetRemb(bitrate_bps, ssrcs); return true; } bool PacketRouter::SendCombinedRtcpPacket( std::vector> packets) { MutexLock lock(&modules_mutex_); // Prefer send modules. for (RtpRtcpInterface* rtp_module : send_modules_list_) { if (rtp_module->RTCP() == RtcpMode::kOff) { continue; } rtp_module->SendCombinedRtcpPacket(std::move(packets)); return true; } if (rtcp_feedback_senders_.empty()) { return false; } auto* rtcp_sender = rtcp_feedback_senders_[0]; rtcp_sender->SendCombinedRtcpPacket(std::move(packets)); return true; } void PacketRouter::AddRembModuleCandidate( RtcpFeedbackSenderInterface* candidate_module, bool media_sender) { RTC_DCHECK(candidate_module); std::vector& candidates = media_sender ? sender_remb_candidates_ : receiver_remb_candidates_; RTC_DCHECK(std::find(candidates.cbegin(), candidates.cend(), candidate_module) == candidates.cend()); candidates.push_back(candidate_module); DetermineActiveRembModule(); } void PacketRouter::MaybeRemoveRembModuleCandidate( RtcpFeedbackSenderInterface* candidate_module, bool media_sender) { RTC_DCHECK(candidate_module); std::vector& candidates = media_sender ? sender_remb_candidates_ : receiver_remb_candidates_; auto it = std::find(candidates.begin(), candidates.end(), candidate_module); if (it == candidates.end()) { return; // Function called due to removal of non-REMB-candidate module. } if (*it == active_remb_module_) { UnsetActiveRembModule(); } candidates.erase(it); DetermineActiveRembModule(); } void PacketRouter::UnsetActiveRembModule() { RTC_CHECK(active_remb_module_); active_remb_module_->UnsetRemb(); active_remb_module_ = nullptr; } void PacketRouter::DetermineActiveRembModule() { // Sender modules take precedence over receiver modules, because SRs (sender // reports) are sent more frequently than RR (receiver reports). // When adding the first sender module, we should change the active REMB // module to be that. Otherwise, we remain with the current active module. RtcpFeedbackSenderInterface* new_active_remb_module; if (!sender_remb_candidates_.empty()) { new_active_remb_module = sender_remb_candidates_.front(); } else if (!receiver_remb_candidates_.empty()) { new_active_remb_module = receiver_remb_candidates_.front(); } else { new_active_remb_module = nullptr; } if (new_active_remb_module != active_remb_module_ && active_remb_module_) { UnsetActiveRembModule(); } active_remb_module_ = new_active_remb_module; } } // namespace webrtc