/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/send_statistics_proxy.h" #include #include #include #include #include #include "absl/strings/match.h" #include "api/video/video_codec_constants.h" #include "api/video/video_codec_type.h" #include "api/video_codecs/video_codec.h" #include "modules/video_coding/include/video_codec_interface.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/mod_ops.h" #include "rtc_base/strings/string_builder.h" #include "system_wrappers/include/field_trial.h" #include "system_wrappers/include/metrics.h" namespace webrtc { namespace { const float kEncodeTimeWeigthFactor = 0.5f; const size_t kMaxEncodedFrameMapSize = 150; const int64_t kMaxEncodedFrameWindowMs = 800; const uint32_t kMaxEncodedFrameTimestampDiff = 900000; // 10 sec. const int64_t kBucketSizeMs = 100; const size_t kBucketCount = 10; const char kVp8ForcedFallbackEncoderFieldTrial[] = "WebRTC-VP8-Forced-Fallback-Encoder-v2"; const char kVp8SwCodecName[] = "libvpx"; // Used by histograms. Values of entries should not be changed. enum HistogramCodecType { kVideoUnknown = 0, kVideoVp8 = 1, kVideoVp9 = 2, kVideoH264 = 3, #ifndef DISABLE_H265 kVideoH265 = 4, #endif kVideoMax = 64, }; const char* kRealtimePrefix = "WebRTC.Video."; const char* kScreenPrefix = "WebRTC.Video.Screenshare."; const char* GetUmaPrefix(VideoEncoderConfig::ContentType content_type) { switch (content_type) { case VideoEncoderConfig::ContentType::kRealtimeVideo: return kRealtimePrefix; case VideoEncoderConfig::ContentType::kScreen: return kScreenPrefix; } RTC_NOTREACHED(); return nullptr; } HistogramCodecType PayloadNameToHistogramCodecType( const std::string& payload_name) { VideoCodecType codecType = PayloadStringToCodecType(payload_name); switch (codecType) { case kVideoCodecVP8: return kVideoVp8; case kVideoCodecVP9: return kVideoVp9; case kVideoCodecH264: return kVideoH264; #ifndef DISABLE_H265 case kVideoCodecH265: return kVideoH265; #endif default: return kVideoUnknown; } } void UpdateCodecTypeHistogram(const std::string& payload_name) { RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.Encoder.CodecType", PayloadNameToHistogramCodecType(payload_name), kVideoMax); } bool IsForcedFallbackPossible(const CodecSpecificInfo* codec_info, int simulcast_index) { return codec_info->codecType == kVideoCodecVP8 && simulcast_index == 0 && (codec_info->codecSpecific.VP8.temporalIdx == 0 || codec_info->codecSpecific.VP8.temporalIdx == kNoTemporalIdx); } absl::optional GetFallbackMaxPixels(const std::string& group) { if (group.empty()) return absl::nullopt; int min_pixels; int max_pixels; int min_bps; if (sscanf(group.c_str(), "-%d,%d,%d", &min_pixels, &max_pixels, &min_bps) != 3) { return absl::optional(); } if (min_pixels <= 0 || max_pixels <= 0 || max_pixels < min_pixels) return absl::optional(); return absl::optional(max_pixels); } absl::optional GetFallbackMaxPixelsIfFieldTrialEnabled() { std::string group = webrtc::field_trial::FindFullName(kVp8ForcedFallbackEncoderFieldTrial); return (absl::StartsWith(group, "Enabled")) ? GetFallbackMaxPixels(group.substr(7)) : absl::optional(); } absl::optional GetFallbackMaxPixelsIfFieldTrialDisabled() { std::string group = webrtc::field_trial::FindFullName(kVp8ForcedFallbackEncoderFieldTrial); return (absl::StartsWith(group, "Disabled")) ? GetFallbackMaxPixels(group.substr(8)) : absl::optional(); } } // namespace const int SendStatisticsProxy::kStatsTimeoutMs = 5000; SendStatisticsProxy::SendStatisticsProxy( Clock* clock, const VideoSendStream::Config& config, VideoEncoderConfig::ContentType content_type) : clock_(clock), payload_name_(config.rtp.payload_name), rtp_config_(config.rtp), fallback_max_pixels_(GetFallbackMaxPixelsIfFieldTrialEnabled()), fallback_max_pixels_disabled_(GetFallbackMaxPixelsIfFieldTrialDisabled()), content_type_(content_type), start_ms_(clock->TimeInMilliseconds()), encode_time_(kEncodeTimeWeigthFactor), quality_limitation_reason_tracker_(clock_), media_byte_rate_tracker_(kBucketSizeMs, kBucketCount), encoded_frame_rate_tracker_(kBucketSizeMs, kBucketCount), last_num_spatial_layers_(0), last_num_simulcast_streams_(0), last_spatial_layer_use_{}, bw_limited_layers_(false), internal_encoder_scaler_(false), uma_container_( new UmaSamplesContainer(GetUmaPrefix(content_type_), stats_, clock)) { } SendStatisticsProxy::~SendStatisticsProxy() { MutexLock lock(&mutex_); uma_container_->UpdateHistograms(rtp_config_, stats_); int64_t elapsed_sec = (clock_->TimeInMilliseconds() - start_ms_) / 1000; RTC_HISTOGRAM_COUNTS_100000("WebRTC.Video.SendStreamLifetimeInSeconds", elapsed_sec); if (elapsed_sec >= metrics::kMinRunTimeInSeconds) UpdateCodecTypeHistogram(payload_name_); } SendStatisticsProxy::FallbackEncoderInfo::FallbackEncoderInfo() = default; SendStatisticsProxy::UmaSamplesContainer::UmaSamplesContainer( const char* prefix, const VideoSendStream::Stats& stats, Clock* const clock) : uma_prefix_(prefix), clock_(clock), input_frame_rate_tracker_(100, 10u), input_fps_counter_(clock, nullptr, true), sent_fps_counter_(clock, nullptr, true), total_byte_counter_(clock, nullptr, true), media_byte_counter_(clock, nullptr, true), rtx_byte_counter_(clock, nullptr, true), padding_byte_counter_(clock, nullptr, true), retransmit_byte_counter_(clock, nullptr, true), fec_byte_counter_(clock, nullptr, true), first_rtcp_stats_time_ms_(-1), first_rtp_stats_time_ms_(-1), start_stats_(stats), num_streams_(0), num_pixels_highest_stream_(0) { InitializeBitrateCounters(stats); static_assert( kMaxEncodedFrameTimestampDiff < std::numeric_limits::max() / 2, "has to be smaller than half range"); } SendStatisticsProxy::UmaSamplesContainer::~UmaSamplesContainer() {} void SendStatisticsProxy::UmaSamplesContainer::InitializeBitrateCounters( const VideoSendStream::Stats& stats) { for (const auto& it : stats.substreams) { uint32_t ssrc = it.first; total_byte_counter_.SetLast(it.second.rtp_stats.transmitted.TotalBytes(), ssrc); padding_byte_counter_.SetLast(it.second.rtp_stats.transmitted.padding_bytes, ssrc); retransmit_byte_counter_.SetLast( it.second.rtp_stats.retransmitted.TotalBytes(), ssrc); fec_byte_counter_.SetLast(it.second.rtp_stats.fec.TotalBytes(), ssrc); switch (it.second.type) { case VideoSendStream::StreamStats::StreamType::kMedia: media_byte_counter_.SetLast(it.second.rtp_stats.MediaPayloadBytes(), ssrc); break; case VideoSendStream::StreamStats::StreamType::kRtx: rtx_byte_counter_.SetLast(it.second.rtp_stats.transmitted.TotalBytes(), ssrc); break; case VideoSendStream::StreamStats::StreamType::kFlexfec: break; } } } void SendStatisticsProxy::UmaSamplesContainer::RemoveOld(int64_t now_ms) { while (!encoded_frames_.empty()) { auto it = encoded_frames_.begin(); if (now_ms - it->second.send_ms < kMaxEncodedFrameWindowMs) break; // Use max per timestamp. sent_width_counter_.Add(it->second.max_width); sent_height_counter_.Add(it->second.max_height); // Check number of encoded streams per timestamp. if (num_streams_ > static_cast(it->second.max_simulcast_idx)) { if (num_streams_ > 1) { int disabled_streams = static_cast(num_streams_ - 1 - it->second.max_simulcast_idx); // Can be limited in resolution or framerate. uint32_t pixels = it->second.max_width * it->second.max_height; bool bw_limited_resolution = disabled_streams > 0 && pixels < num_pixels_highest_stream_; bw_limited_frame_counter_.Add(bw_limited_resolution); if (bw_limited_resolution) { bw_resolutions_disabled_counter_.Add(disabled_streams); } } } encoded_frames_.erase(it); } } bool SendStatisticsProxy::UmaSamplesContainer::InsertEncodedFrame( const EncodedImage& encoded_frame, int simulcast_idx) { int64_t now_ms = clock_->TimeInMilliseconds(); RemoveOld(now_ms); if (encoded_frames_.size() > kMaxEncodedFrameMapSize) { encoded_frames_.clear(); } // Check for jump in timestamp. if (!encoded_frames_.empty()) { uint32_t oldest_timestamp = encoded_frames_.begin()->first; if (ForwardDiff(oldest_timestamp, encoded_frame.Timestamp()) > kMaxEncodedFrameTimestampDiff) { // Gap detected, clear frames to have a sequence where newest timestamp // is not too far away from oldest in order to distinguish old and new. encoded_frames_.clear(); } } auto it = encoded_frames_.find(encoded_frame.Timestamp()); if (it == encoded_frames_.end()) { // First frame with this timestamp. encoded_frames_.insert( std::make_pair(encoded_frame.Timestamp(), Frame(now_ms, encoded_frame._encodedWidth, encoded_frame._encodedHeight, simulcast_idx))); sent_fps_counter_.Add(1); return true; } it->second.max_width = std::max(it->second.max_width, encoded_frame._encodedWidth); it->second.max_height = std::max(it->second.max_height, encoded_frame._encodedHeight); it->second.max_simulcast_idx = std::max(it->second.max_simulcast_idx, simulcast_idx); return false; } void SendStatisticsProxy::UmaSamplesContainer::UpdateHistograms( const RtpConfig& rtp_config, const VideoSendStream::Stats& current_stats) { RTC_DCHECK(uma_prefix_ == kRealtimePrefix || uma_prefix_ == kScreenPrefix); const int kIndex = uma_prefix_ == kScreenPrefix ? 1 : 0; const int kMinRequiredPeriodicSamples = 6; char log_stream_buf[8 * 1024]; rtc::SimpleStringBuilder log_stream(log_stream_buf); int in_width = input_width_counter_.Avg(kMinRequiredMetricsSamples); int in_height = input_height_counter_.Avg(kMinRequiredMetricsSamples); if (in_width != -1) { RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "InputWidthInPixels", in_width); RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "InputHeightInPixels", in_height); log_stream << uma_prefix_ << "InputWidthInPixels " << in_width << "\n" << uma_prefix_ << "InputHeightInPixels " << in_height << "\n"; } AggregatedStats in_fps = input_fps_counter_.GetStats(); if (in_fps.num_samples >= kMinRequiredPeriodicSamples) { RTC_HISTOGRAMS_COUNTS_100(kIndex, uma_prefix_ + "InputFramesPerSecond", in_fps.average); log_stream << uma_prefix_ << "InputFramesPerSecond " << in_fps.ToString() << "\n"; } int sent_width = sent_width_counter_.Avg(kMinRequiredMetricsSamples); int sent_height = sent_height_counter_.Avg(kMinRequiredMetricsSamples); if (sent_width != -1) { RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "SentWidthInPixels", sent_width); RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "SentHeightInPixels", sent_height); log_stream << uma_prefix_ << "SentWidthInPixels " << sent_width << "\n" << uma_prefix_ << "SentHeightInPixels " << sent_height << "\n"; } AggregatedStats sent_fps = sent_fps_counter_.GetStats(); if (sent_fps.num_samples >= kMinRequiredPeriodicSamples) { RTC_HISTOGRAMS_COUNTS_100(kIndex, uma_prefix_ + "SentFramesPerSecond", sent_fps.average); log_stream << uma_prefix_ << "SentFramesPerSecond " << sent_fps.ToString() << "\n"; } if (in_fps.num_samples > kMinRequiredPeriodicSamples && sent_fps.num_samples >= kMinRequiredPeriodicSamples) { int in_fps_avg = in_fps.average; if (in_fps_avg > 0) { int sent_fps_avg = sent_fps.average; int sent_to_in_fps_ratio_percent = (100 * sent_fps_avg + in_fps_avg / 2) / in_fps_avg; // If reported period is small, it may happen that sent_fps is larger than // input_fps briefly on average. This should be treated as 100% sent to // input ratio. if (sent_to_in_fps_ratio_percent > 100) sent_to_in_fps_ratio_percent = 100; RTC_HISTOGRAMS_PERCENTAGE(kIndex, uma_prefix_ + "SentToInputFpsRatioPercent", sent_to_in_fps_ratio_percent); log_stream << uma_prefix_ << "SentToInputFpsRatioPercent " << sent_to_in_fps_ratio_percent << "\n"; } } int encode_ms = encode_time_counter_.Avg(kMinRequiredMetricsSamples); if (encode_ms != -1) { RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "EncodeTimeInMs", encode_ms); log_stream << uma_prefix_ << "EncodeTimeInMs " << encode_ms << "\n"; } int key_frames_permille = key_frame_counter_.Permille(kMinRequiredMetricsSamples); if (key_frames_permille != -1) { RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "KeyFramesSentInPermille", key_frames_permille); log_stream << uma_prefix_ << "KeyFramesSentInPermille " << key_frames_permille << "\n"; } int quality_limited = quality_limited_frame_counter_.Percent(kMinRequiredMetricsSamples); if (quality_limited != -1) { RTC_HISTOGRAMS_PERCENTAGE(kIndex, uma_prefix_ + "QualityLimitedResolutionInPercent", quality_limited); log_stream << uma_prefix_ << "QualityLimitedResolutionInPercent " << quality_limited << "\n"; } int downscales = quality_downscales_counter_.Avg(kMinRequiredMetricsSamples); if (downscales != -1) { RTC_HISTOGRAMS_ENUMERATION( kIndex, uma_prefix_ + "QualityLimitedResolutionDownscales", downscales, 20); } int cpu_limited = cpu_limited_frame_counter_.Percent(kMinRequiredMetricsSamples); if (cpu_limited != -1) { RTC_HISTOGRAMS_PERCENTAGE( kIndex, uma_prefix_ + "CpuLimitedResolutionInPercent", cpu_limited); } int bw_limited = bw_limited_frame_counter_.Percent(kMinRequiredMetricsSamples); if (bw_limited != -1) { RTC_HISTOGRAMS_PERCENTAGE( kIndex, uma_prefix_ + "BandwidthLimitedResolutionInPercent", bw_limited); } int num_disabled = bw_resolutions_disabled_counter_.Avg(kMinRequiredMetricsSamples); if (num_disabled != -1) { RTC_HISTOGRAMS_ENUMERATION( kIndex, uma_prefix_ + "BandwidthLimitedResolutionsDisabled", num_disabled, 10); } int delay_ms = delay_counter_.Avg(kMinRequiredMetricsSamples); if (delay_ms != -1) RTC_HISTOGRAMS_COUNTS_100000(kIndex, uma_prefix_ + "SendSideDelayInMs", delay_ms); int max_delay_ms = max_delay_counter_.Avg(kMinRequiredMetricsSamples); if (max_delay_ms != -1) { RTC_HISTOGRAMS_COUNTS_100000(kIndex, uma_prefix_ + "SendSideDelayMaxInMs", max_delay_ms); } for (const auto& it : qp_counters_) { int qp_vp8 = it.second.vp8.Avg(kMinRequiredMetricsSamples); if (qp_vp8 != -1) { int spatial_idx = it.first; if (spatial_idx == -1) { RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.Vp8", qp_vp8); } else if (spatial_idx == 0) { RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.Vp8.S0", qp_vp8); } else if (spatial_idx == 1) { RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.Vp8.S1", qp_vp8); } else if (spatial_idx == 2) { RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.Vp8.S2", qp_vp8); } else { RTC_LOG(LS_WARNING) << "QP stats not recorded for VP8 spatial idx " << spatial_idx; } } int qp_vp9 = it.second.vp9.Avg(kMinRequiredMetricsSamples); if (qp_vp9 != -1) { int spatial_idx = it.first; if (spatial_idx == -1) { RTC_HISTOGRAMS_COUNTS_500(kIndex, uma_prefix_ + "Encoded.Qp.Vp9", qp_vp9); } else if (spatial_idx == 0) { RTC_HISTOGRAMS_COUNTS_500(kIndex, uma_prefix_ + "Encoded.Qp.Vp9.S0", qp_vp9); } else if (spatial_idx == 1) { RTC_HISTOGRAMS_COUNTS_500(kIndex, uma_prefix_ + "Encoded.Qp.Vp9.S1", qp_vp9); } else if (spatial_idx == 2) { RTC_HISTOGRAMS_COUNTS_500(kIndex, uma_prefix_ + "Encoded.Qp.Vp9.S2", qp_vp9); } else { RTC_LOG(LS_WARNING) << "QP stats not recorded for VP9 spatial layer " << spatial_idx; } } int qp_h264 = it.second.h264.Avg(kMinRequiredMetricsSamples); if (qp_h264 != -1) { int spatial_idx = it.first; if (spatial_idx == -1) { RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.H264", qp_h264); } else if (spatial_idx == 0) { RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.H264.S0", qp_h264); } else if (spatial_idx == 1) { RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.H264.S1", qp_h264); } else if (spatial_idx == 2) { RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.H264.S2", qp_h264); } else { RTC_LOG(LS_WARNING) << "QP stats not recorded for H264 spatial idx " << spatial_idx; } } } if (first_rtp_stats_time_ms_ != -1) { quality_adapt_timer_.Stop(clock_->TimeInMilliseconds()); int64_t elapsed_sec = quality_adapt_timer_.total_ms / 1000; if (elapsed_sec >= metrics::kMinRunTimeInSeconds) { int quality_changes = current_stats.number_of_quality_adapt_changes - start_stats_.number_of_quality_adapt_changes; // Only base stats on changes during a call, discard initial changes. int initial_changes = initial_quality_changes_.down + initial_quality_changes_.up; if (initial_changes <= quality_changes) quality_changes -= initial_changes; RTC_HISTOGRAMS_COUNTS_100(kIndex, uma_prefix_ + "AdaptChangesPerMinute.Quality", quality_changes * 60 / elapsed_sec); } cpu_adapt_timer_.Stop(clock_->TimeInMilliseconds()); elapsed_sec = cpu_adapt_timer_.total_ms / 1000; if (elapsed_sec >= metrics::kMinRunTimeInSeconds) { int cpu_changes = current_stats.number_of_cpu_adapt_changes - start_stats_.number_of_cpu_adapt_changes; RTC_HISTOGRAMS_COUNTS_100(kIndex, uma_prefix_ + "AdaptChangesPerMinute.Cpu", cpu_changes * 60 / elapsed_sec); } } if (first_rtcp_stats_time_ms_ != -1) { int64_t elapsed_sec = (clock_->TimeInMilliseconds() - first_rtcp_stats_time_ms_) / 1000; if (elapsed_sec >= metrics::kMinRunTimeInSeconds) { int fraction_lost = report_block_stats_.FractionLostInPercent(); if (fraction_lost != -1) { RTC_HISTOGRAMS_PERCENTAGE( kIndex, uma_prefix_ + "SentPacketsLostInPercent", fraction_lost); log_stream << uma_prefix_ << "SentPacketsLostInPercent " << fraction_lost << "\n"; } // The RTCP packet type counters, delivered via the // RtcpPacketTypeCounterObserver interface, are aggregates over the entire // life of the send stream and are not reset when switching content type. // For the purpose of these statistics though, we want new counts when // switching since we switch histogram name. On every reset of the // UmaSamplesContainer, we save the initial state of the counters, so that // we can calculate the delta here and aggregate over all ssrcs. RtcpPacketTypeCounter counters; for (uint32_t ssrc : rtp_config.ssrcs) { auto kv = current_stats.substreams.find(ssrc); if (kv == current_stats.substreams.end()) continue; RtcpPacketTypeCounter stream_counters = kv->second.rtcp_packet_type_counts; kv = start_stats_.substreams.find(ssrc); if (kv != start_stats_.substreams.end()) stream_counters.Subtract(kv->second.rtcp_packet_type_counts); counters.Add(stream_counters); } RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "NackPacketsReceivedPerMinute", counters.nack_packets * 60 / elapsed_sec); RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "FirPacketsReceivedPerMinute", counters.fir_packets * 60 / elapsed_sec); RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "PliPacketsReceivedPerMinute", counters.pli_packets * 60 / elapsed_sec); if (counters.nack_requests > 0) { RTC_HISTOGRAMS_PERCENTAGE( kIndex, uma_prefix_ + "UniqueNackRequestsReceivedInPercent", counters.UniqueNackRequestsInPercent()); } } } if (first_rtp_stats_time_ms_ != -1) { int64_t elapsed_sec = (clock_->TimeInMilliseconds() - first_rtp_stats_time_ms_) / 1000; if (elapsed_sec >= metrics::kMinRunTimeInSeconds) { RTC_HISTOGRAMS_COUNTS_100(kIndex, uma_prefix_ + "NumberOfPauseEvents", target_rate_updates_.pause_resume_events); log_stream << uma_prefix_ << "NumberOfPauseEvents " << target_rate_updates_.pause_resume_events << "\n"; int paused_time_percent = paused_time_counter_.Percent(metrics::kMinRunTimeInSeconds * 1000); if (paused_time_percent != -1) { RTC_HISTOGRAMS_PERCENTAGE(kIndex, uma_prefix_ + "PausedTimeInPercent", paused_time_percent); log_stream << uma_prefix_ << "PausedTimeInPercent " << paused_time_percent << "\n"; } } } if (fallback_info_.is_possible) { // Double interval since there is some time before fallback may occur. const int kMinRunTimeMs = 2 * metrics::kMinRunTimeInSeconds * 1000; int64_t elapsed_ms = fallback_info_.elapsed_ms; int fallback_time_percent = fallback_active_counter_.Percent(kMinRunTimeMs); if (fallback_time_percent != -1 && elapsed_ms >= kMinRunTimeMs) { RTC_HISTOGRAMS_PERCENTAGE( kIndex, uma_prefix_ + "Encoder.ForcedSwFallbackTimeInPercent.Vp8", fallback_time_percent); RTC_HISTOGRAMS_COUNTS_100( kIndex, uma_prefix_ + "Encoder.ForcedSwFallbackChangesPerMinute.Vp8", fallback_info_.on_off_events * 60 / (elapsed_ms / 1000)); } } AggregatedStats total_bytes_per_sec = total_byte_counter_.GetStats(); if (total_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) { RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "BitrateSentInKbps", total_bytes_per_sec.average * 8 / 1000); log_stream << uma_prefix_ << "BitrateSentInBps " << total_bytes_per_sec.ToStringWithMultiplier(8) << "\n"; } AggregatedStats media_bytes_per_sec = media_byte_counter_.GetStats(); if (media_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) { RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "MediaBitrateSentInKbps", media_bytes_per_sec.average * 8 / 1000); log_stream << uma_prefix_ << "MediaBitrateSentInBps " << media_bytes_per_sec.ToStringWithMultiplier(8) << "\n"; } AggregatedStats padding_bytes_per_sec = padding_byte_counter_.GetStats(); if (padding_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) { RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "PaddingBitrateSentInKbps", padding_bytes_per_sec.average * 8 / 1000); log_stream << uma_prefix_ << "PaddingBitrateSentInBps " << padding_bytes_per_sec.ToStringWithMultiplier(8) << "\n"; } AggregatedStats retransmit_bytes_per_sec = retransmit_byte_counter_.GetStats(); if (retransmit_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) { RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "RetransmittedBitrateSentInKbps", retransmit_bytes_per_sec.average * 8 / 1000); log_stream << uma_prefix_ << "RetransmittedBitrateSentInBps " << retransmit_bytes_per_sec.ToStringWithMultiplier(8) << "\n"; } if (!rtp_config.rtx.ssrcs.empty()) { AggregatedStats rtx_bytes_per_sec = rtx_byte_counter_.GetStats(); int rtx_bytes_per_sec_avg = -1; if (rtx_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) { rtx_bytes_per_sec_avg = rtx_bytes_per_sec.average; log_stream << uma_prefix_ << "RtxBitrateSentInBps " << rtx_bytes_per_sec.ToStringWithMultiplier(8) << "\n"; } else if (total_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) { rtx_bytes_per_sec_avg = 0; // RTX enabled but no RTX data sent, record 0. } if (rtx_bytes_per_sec_avg != -1) { RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "RtxBitrateSentInKbps", rtx_bytes_per_sec_avg * 8 / 1000); } } if (rtp_config.flexfec.payload_type != -1 || rtp_config.ulpfec.red_payload_type != -1) { AggregatedStats fec_bytes_per_sec = fec_byte_counter_.GetStats(); if (fec_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) { RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "FecBitrateSentInKbps", fec_bytes_per_sec.average * 8 / 1000); log_stream << uma_prefix_ << "FecBitrateSentInBps " << fec_bytes_per_sec.ToStringWithMultiplier(8) << "\n"; } } log_stream << "Frames encoded " << current_stats.frames_encoded << "\n" << uma_prefix_ << "DroppedFrames.Capturer " << current_stats.frames_dropped_by_capturer << "\n"; RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "DroppedFrames.Capturer", current_stats.frames_dropped_by_capturer); log_stream << uma_prefix_ << "DroppedFrames.EncoderQueue " << current_stats.frames_dropped_by_encoder_queue << "\n"; RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "DroppedFrames.EncoderQueue", current_stats.frames_dropped_by_encoder_queue); log_stream << uma_prefix_ << "DroppedFrames.Encoder " << current_stats.frames_dropped_by_encoder << "\n"; RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "DroppedFrames.Encoder", current_stats.frames_dropped_by_encoder); log_stream << uma_prefix_ << "DroppedFrames.Ratelimiter " << current_stats.frames_dropped_by_rate_limiter << "\n"; RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "DroppedFrames.Ratelimiter", current_stats.frames_dropped_by_rate_limiter); log_stream << uma_prefix_ << "DroppedFrames.CongestionWindow " << current_stats.frames_dropped_by_congestion_window; RTC_LOG(LS_INFO) << log_stream.str(); } void SendStatisticsProxy::OnEncoderReconfigured( const VideoEncoderConfig& config, const std::vector& streams) { MutexLock lock(&mutex_); if (content_type_ != config.content_type) { uma_container_->UpdateHistograms(rtp_config_, stats_); uma_container_.reset(new UmaSamplesContainer( GetUmaPrefix(config.content_type), stats_, clock_)); content_type_ = config.content_type; } uma_container_->encoded_frames_.clear(); uma_container_->num_streams_ = streams.size(); uma_container_->num_pixels_highest_stream_ = streams.empty() ? 0 : (streams.back().width * streams.back().height); } void SendStatisticsProxy::OnEncodedFrameTimeMeasured(int encode_time_ms, int encode_usage_percent) { RTC_DCHECK_GE(encode_time_ms, 0); MutexLock lock(&mutex_); uma_container_->encode_time_counter_.Add(encode_time_ms); encode_time_.Apply(1.0f, encode_time_ms); stats_.avg_encode_time_ms = std::round(encode_time_.filtered()); stats_.total_encode_time_ms += encode_time_ms; stats_.encode_usage_percent = encode_usage_percent; } void SendStatisticsProxy::OnSuspendChange(bool is_suspended) { int64_t now_ms = clock_->TimeInMilliseconds(); MutexLock lock(&mutex_); stats_.suspended = is_suspended; if (is_suspended) { // Pause framerate (add min pause time since there may be frames/packets // that are not yet sent). const int64_t kMinMs = 500; uma_container_->input_fps_counter_.ProcessAndPauseForDuration(kMinMs); uma_container_->sent_fps_counter_.ProcessAndPauseForDuration(kMinMs); // Pause bitrate stats. uma_container_->total_byte_counter_.ProcessAndPauseForDuration(kMinMs); uma_container_->media_byte_counter_.ProcessAndPauseForDuration(kMinMs); uma_container_->rtx_byte_counter_.ProcessAndPauseForDuration(kMinMs); uma_container_->padding_byte_counter_.ProcessAndPauseForDuration(kMinMs); uma_container_->retransmit_byte_counter_.ProcessAndPauseForDuration(kMinMs); uma_container_->fec_byte_counter_.ProcessAndPauseForDuration(kMinMs); // Stop adaptation stats. uma_container_->cpu_adapt_timer_.Stop(now_ms); uma_container_->quality_adapt_timer_.Stop(now_ms); } else { // Start adaptation stats if scaling is enabled. if (adaptation_limitations_.MaskedCpuCounts() .resolution_adaptations.has_value()) uma_container_->cpu_adapt_timer_.Start(now_ms); if (adaptation_limitations_.MaskedQualityCounts() .resolution_adaptations.has_value()) uma_container_->quality_adapt_timer_.Start(now_ms); // Stop pause explicitly for stats that may be zero/not updated for some // time. uma_container_->rtx_byte_counter_.ProcessAndStopPause(); uma_container_->padding_byte_counter_.ProcessAndStopPause(); uma_container_->retransmit_byte_counter_.ProcessAndStopPause(); uma_container_->fec_byte_counter_.ProcessAndStopPause(); } } VideoSendStream::Stats SendStatisticsProxy::GetStats() { MutexLock lock(&mutex_); PurgeOldStats(); stats_.input_frame_rate = round(uma_container_->input_frame_rate_tracker_.ComputeRate()); stats_.content_type = content_type_ == VideoEncoderConfig::ContentType::kRealtimeVideo ? VideoContentType::UNSPECIFIED : VideoContentType::SCREENSHARE; stats_.encode_frame_rate = round(encoded_frame_rate_tracker_.ComputeRate()); stats_.media_bitrate_bps = media_byte_rate_tracker_.ComputeRate() * 8; stats_.quality_limitation_durations_ms = quality_limitation_reason_tracker_.DurationsMs(); return stats_; } void SendStatisticsProxy::PurgeOldStats() { int64_t old_stats_ms = clock_->TimeInMilliseconds() - kStatsTimeoutMs; for (std::map::iterator it = stats_.substreams.begin(); it != stats_.substreams.end(); ++it) { uint32_t ssrc = it->first; if (update_times_[ssrc].resolution_update_ms <= old_stats_ms) { it->second.width = 0; it->second.height = 0; } } } VideoSendStream::StreamStats* SendStatisticsProxy::GetStatsEntry( uint32_t ssrc) { std::map::iterator it = stats_.substreams.find(ssrc); if (it != stats_.substreams.end()) return &it->second; bool is_media = rtp_config_.IsMediaSsrc(ssrc); bool is_flexfec = rtp_config_.flexfec.payload_type != -1 && ssrc == rtp_config_.flexfec.ssrc; bool is_rtx = rtp_config_.IsRtxSsrc(ssrc); if (!is_media && !is_flexfec && !is_rtx) return nullptr; // Insert new entry and return ptr. VideoSendStream::StreamStats* entry = &stats_.substreams[ssrc]; if (is_media) { entry->type = VideoSendStream::StreamStats::StreamType::kMedia; } else if (is_rtx) { entry->type = VideoSendStream::StreamStats::StreamType::kRtx; } else if (is_flexfec) { entry->type = VideoSendStream::StreamStats::StreamType::kFlexfec; } else { RTC_NOTREACHED(); } switch (entry->type) { case VideoSendStream::StreamStats::StreamType::kMedia: break; case VideoSendStream::StreamStats::StreamType::kRtx: entry->referenced_media_ssrc = rtp_config_.GetMediaSsrcAssociatedWithRtxSsrc(ssrc); break; case VideoSendStream::StreamStats::StreamType::kFlexfec: entry->referenced_media_ssrc = rtp_config_.GetMediaSsrcAssociatedWithFlexfecSsrc(ssrc); break; } return entry; } void SendStatisticsProxy::OnInactiveSsrc(uint32_t ssrc) { MutexLock lock(&mutex_); VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc); if (!stats) return; stats->total_bitrate_bps = 0; stats->retransmit_bitrate_bps = 0; stats->height = 0; stats->width = 0; } void SendStatisticsProxy::OnSetEncoderTargetRate(uint32_t bitrate_bps) { MutexLock lock(&mutex_); if (uma_container_->target_rate_updates_.last_ms == -1 && bitrate_bps == 0) return; // Start on first non-zero bitrate, may initially be zero. int64_t now = clock_->TimeInMilliseconds(); if (uma_container_->target_rate_updates_.last_ms != -1) { bool was_paused = stats_.target_media_bitrate_bps == 0; int64_t diff_ms = now - uma_container_->target_rate_updates_.last_ms; uma_container_->paused_time_counter_.Add(was_paused, diff_ms); // Use last to not include update when stream is stopped and video disabled. if (uma_container_->target_rate_updates_.last_paused_or_resumed) ++uma_container_->target_rate_updates_.pause_resume_events; // Check if video is paused/resumed. uma_container_->target_rate_updates_.last_paused_or_resumed = (bitrate_bps == 0) != was_paused; } uma_container_->target_rate_updates_.last_ms = now; stats_.target_media_bitrate_bps = bitrate_bps; } void SendStatisticsProxy::UpdateEncoderFallbackStats( const CodecSpecificInfo* codec_info, int pixels, int simulcast_index) { UpdateFallbackDisabledStats(codec_info, pixels, simulcast_index); if (!fallback_max_pixels_ || !uma_container_->fallback_info_.is_possible) { return; } if (!IsForcedFallbackPossible(codec_info, simulcast_index)) { uma_container_->fallback_info_.is_possible = false; return; } FallbackEncoderInfo* fallback_info = &uma_container_->fallback_info_; const int64_t now_ms = clock_->TimeInMilliseconds(); bool is_active = fallback_info->is_active; if (encoder_changed_) { // Implementation changed. const bool last_was_vp8_software = encoder_changed_->previous_encoder_implementation == kVp8SwCodecName; is_active = encoder_changed_->new_encoder_implementation == kVp8SwCodecName; encoder_changed_.reset(); if (!is_active && !last_was_vp8_software) { // First or not a VP8 SW change, update stats on next call. return; } if (is_active && (pixels > *fallback_max_pixels_)) { // Pixels should not be above |fallback_max_pixels_|. If above skip to // avoid fallbacks due to failure. fallback_info->is_possible = false; return; } stats_.has_entered_low_resolution = true; ++fallback_info->on_off_events; } if (fallback_info->last_update_ms) { int64_t diff_ms = now_ms - *(fallback_info->last_update_ms); // If the time diff since last update is greater than |max_frame_diff_ms|, // video is considered paused/muted and the change is not included. if (diff_ms < fallback_info->max_frame_diff_ms) { uma_container_->fallback_active_counter_.Add(fallback_info->is_active, diff_ms); fallback_info->elapsed_ms += diff_ms; } } fallback_info->is_active = is_active; fallback_info->last_update_ms.emplace(now_ms); } void SendStatisticsProxy::UpdateFallbackDisabledStats( const CodecSpecificInfo* codec_info, int pixels, int simulcast_index) { if (!fallback_max_pixels_disabled_ || !uma_container_->fallback_info_disabled_.is_possible || stats_.has_entered_low_resolution) { return; } if (!IsForcedFallbackPossible(codec_info, simulcast_index) || stats_.encoder_implementation_name == kVp8SwCodecName) { uma_container_->fallback_info_disabled_.is_possible = false; return; } if (pixels <= *fallback_max_pixels_disabled_ || uma_container_->fallback_info_disabled_.min_pixel_limit_reached) { stats_.has_entered_low_resolution = true; } } void SendStatisticsProxy::OnMinPixelLimitReached() { MutexLock lock(&mutex_); uma_container_->fallback_info_disabled_.min_pixel_limit_reached = true; } void SendStatisticsProxy::OnSendEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_info) { // Simulcast is used for VP8, H264 and Generic. int simulcast_idx = (codec_info && (codec_info->codecType == kVideoCodecVP8 || codec_info->codecType == kVideoCodecH264 || codec_info->codecType == kVideoCodecGeneric)) ? encoded_image.SpatialIndex().value_or(0) : 0; MutexLock lock(&mutex_); ++stats_.frames_encoded; // The current encode frame rate is based on previously encoded frames. double encode_frame_rate = encoded_frame_rate_tracker_.ComputeRate(); // We assume that less than 1 FPS is not a trustworthy estimate - perhaps we // just started encoding for the first time or after a pause. Assuming frame // rate is at least 1 FPS is conservative to avoid too large increments. if (encode_frame_rate < 1.0) encode_frame_rate = 1.0; double target_frame_size_bytes = stats_.target_media_bitrate_bps / (8.0 * encode_frame_rate); // |stats_.target_media_bitrate_bps| is set in // SendStatisticsProxy::OnSetEncoderTargetRate. stats_.total_encoded_bytes_target += round(target_frame_size_bytes); if (codec_info) { UpdateEncoderFallbackStats( codec_info, encoded_image._encodedWidth * encoded_image._encodedHeight, simulcast_idx); } if (static_cast(simulcast_idx) >= rtp_config_.ssrcs.size()) { RTC_LOG(LS_ERROR) << "Encoded image outside simulcast range (" << simulcast_idx << " >= " << rtp_config_.ssrcs.size() << ")."; return; } uint32_t ssrc = rtp_config_.ssrcs[simulcast_idx]; VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc); if (!stats) return; if (encoded_frame_rate_trackers_.count(simulcast_idx) == 0) { encoded_frame_rate_trackers_[simulcast_idx] = std::make_unique(kBucketSizeMs, kBucketCount); } stats->encode_frame_rate = encoded_frame_rate_trackers_[simulcast_idx]->ComputeRate(); stats->frames_encoded++; stats->total_encode_time_ms += encoded_image.timing_.encode_finish_ms - encoded_image.timing_.encode_start_ms; // Report resolution of the top spatial layer. bool is_top_spatial_layer = codec_info == nullptr || codec_info->end_of_picture; if (!stats->width || !stats->height || is_top_spatial_layer) { stats->width = encoded_image._encodedWidth; stats->height = encoded_image._encodedHeight; update_times_[ssrc].resolution_update_ms = clock_->TimeInMilliseconds(); } uma_container_->key_frame_counter_.Add(encoded_image._frameType == VideoFrameType::kVideoFrameKey); if (encoded_image.qp_ != -1) { if (!stats->qp_sum) stats->qp_sum = 0; *stats->qp_sum += encoded_image.qp_; if (codec_info) { if (codec_info->codecType == kVideoCodecVP8) { int spatial_idx = (rtp_config_.ssrcs.size() == 1) ? -1 : simulcast_idx; uma_container_->qp_counters_[spatial_idx].vp8.Add(encoded_image.qp_); } else if (codec_info->codecType == kVideoCodecVP9) { int spatial_idx = encoded_image.SpatialIndex().value_or(-1); uma_container_->qp_counters_[spatial_idx].vp9.Add(encoded_image.qp_); } else if (codec_info->codecType == kVideoCodecH264) { int spatial_idx = (rtp_config_.ssrcs.size() == 1) ? -1 : simulcast_idx; uma_container_->qp_counters_[spatial_idx].h264.Add(encoded_image.qp_); } } } // If any of the simulcast streams have a huge frame, it should be counted // as a single difficult input frame. // https://w3c.github.io/webrtc-stats/#dom-rtcvideosenderstats-hugeframessent if (encoded_image.timing_.flags & VideoSendTiming::kTriggeredBySize) { ++stats->huge_frames_sent; if (!last_outlier_timestamp_ || *last_outlier_timestamp_ < encoded_image.capture_time_ms_) { last_outlier_timestamp_.emplace(encoded_image.capture_time_ms_); ++stats_.huge_frames_sent; } } media_byte_rate_tracker_.AddSamples(encoded_image.size()); if (uma_container_->InsertEncodedFrame(encoded_image, simulcast_idx)) { encoded_frame_rate_trackers_[simulcast_idx]->AddSamples(1); encoded_frame_rate_tracker_.AddSamples(1); } absl::optional downscales = adaptation_limitations_.MaskedQualityCounts().resolution_adaptations; stats_.bw_limited_resolution |= (downscales.has_value() && downscales.value() > 0); if (downscales.has_value()) { uma_container_->quality_limited_frame_counter_.Add(downscales.value() > 0); if (downscales.value() > 0) uma_container_->quality_downscales_counter_.Add(downscales.value()); } } void SendStatisticsProxy::OnEncoderImplementationChanged( const std::string& implementation_name) { MutexLock lock(&mutex_); encoder_changed_ = EncoderChangeEvent{stats_.encoder_implementation_name, implementation_name}; stats_.encoder_implementation_name = implementation_name; } int SendStatisticsProxy::GetInputFrameRate() const { MutexLock lock(&mutex_); return round(uma_container_->input_frame_rate_tracker_.ComputeRate()); } int SendStatisticsProxy::GetSendFrameRate() const { MutexLock lock(&mutex_); return round(encoded_frame_rate_tracker_.ComputeRate()); } void SendStatisticsProxy::OnIncomingFrame(int width, int height) { MutexLock lock(&mutex_); uma_container_->input_frame_rate_tracker_.AddSamples(1); uma_container_->input_fps_counter_.Add(1); uma_container_->input_width_counter_.Add(width); uma_container_->input_height_counter_.Add(height); if (adaptation_limitations_.MaskedCpuCounts() .resolution_adaptations.has_value()) { uma_container_->cpu_limited_frame_counter_.Add( stats_.cpu_limited_resolution); } if (encoded_frame_rate_tracker_.TotalSampleCount() == 0) { // Set start time now instead of when first key frame is encoded to avoid a // too high initial estimate. encoded_frame_rate_tracker_.AddSamples(0); } } void SendStatisticsProxy::OnFrameDropped(DropReason reason) { MutexLock lock(&mutex_); switch (reason) { case DropReason::kSource: ++stats_.frames_dropped_by_capturer; break; case DropReason::kEncoderQueue: ++stats_.frames_dropped_by_encoder_queue; break; case DropReason::kEncoder: ++stats_.frames_dropped_by_encoder; break; case DropReason::kMediaOptimization: ++stats_.frames_dropped_by_rate_limiter; break; case DropReason::kCongestionWindow: ++stats_.frames_dropped_by_congestion_window; break; } } void SendStatisticsProxy::ClearAdaptationStats() { MutexLock lock(&mutex_); adaptation_limitations_.set_cpu_counts(VideoAdaptationCounters()); adaptation_limitations_.set_quality_counts(VideoAdaptationCounters()); UpdateAdaptationStats(); } void SendStatisticsProxy::UpdateAdaptationSettings( VideoStreamEncoderObserver::AdaptationSettings cpu_settings, VideoStreamEncoderObserver::AdaptationSettings quality_settings) { MutexLock lock(&mutex_); adaptation_limitations_.UpdateMaskingSettings(cpu_settings, quality_settings); SetAdaptTimer(adaptation_limitations_.MaskedCpuCounts(), &uma_container_->cpu_adapt_timer_); SetAdaptTimer(adaptation_limitations_.MaskedQualityCounts(), &uma_container_->quality_adapt_timer_); UpdateAdaptationStats(); } void SendStatisticsProxy::OnAdaptationChanged( VideoAdaptationReason reason, const VideoAdaptationCounters& cpu_counters, const VideoAdaptationCounters& quality_counters) { MutexLock lock(&mutex_); MaskedAdaptationCounts receiver = adaptation_limitations_.MaskedQualityCounts(); adaptation_limitations_.set_cpu_counts(cpu_counters); adaptation_limitations_.set_quality_counts(quality_counters); switch (reason) { case VideoAdaptationReason::kCpu: ++stats_.number_of_cpu_adapt_changes; break; case VideoAdaptationReason::kQuality: TryUpdateInitialQualityResolutionAdaptUp( receiver.resolution_adaptations, adaptation_limitations_.MaskedQualityCounts().resolution_adaptations); ++stats_.number_of_quality_adapt_changes; break; } UpdateAdaptationStats(); } void SendStatisticsProxy::UpdateAdaptationStats() { auto cpu_counts = adaptation_limitations_.MaskedCpuCounts(); auto quality_counts = adaptation_limitations_.MaskedQualityCounts(); bool is_cpu_limited = cpu_counts.resolution_adaptations > 0 || cpu_counts.num_framerate_reductions > 0; bool is_bandwidth_limited = quality_counts.resolution_adaptations > 0 || quality_counts.num_framerate_reductions > 0 || bw_limited_layers_ || internal_encoder_scaler_; if (is_bandwidth_limited) { // We may be both CPU limited and bandwidth limited at the same time but // there is no way to express this in standardized stats. Heuristically, // bandwidth is more likely to be a limiting factor than CPU, and more // likely to vary over time, so only when we aren't bandwidth limited do we // want to know about our CPU being the bottleneck. quality_limitation_reason_tracker_.SetReason( QualityLimitationReason::kBandwidth); } else if (is_cpu_limited) { quality_limitation_reason_tracker_.SetReason(QualityLimitationReason::kCpu); } else { quality_limitation_reason_tracker_.SetReason( QualityLimitationReason::kNone); } stats_.cpu_limited_resolution = cpu_counts.resolution_adaptations > 0; stats_.cpu_limited_framerate = cpu_counts.num_framerate_reductions > 0; stats_.bw_limited_resolution = quality_counts.resolution_adaptations > 0; stats_.bw_limited_framerate = quality_counts.num_framerate_reductions > 0; // If bitrate allocator has disabled some layers frame-rate or resolution are // limited depending on the encoder configuration. if (bw_limited_layers_) { switch (content_type_) { case VideoEncoderConfig::ContentType::kRealtimeVideo: { stats_.bw_limited_resolution = true; break; } case VideoEncoderConfig::ContentType::kScreen: { stats_.bw_limited_framerate = true; break; } } } if (internal_encoder_scaler_) { stats_.bw_limited_resolution = true; } stats_.quality_limitation_reason = quality_limitation_reason_tracker_.current_reason(); // |stats_.quality_limitation_durations_ms| depends on the current time // when it is polled; it is updated in SendStatisticsProxy::GetStats(). } void SendStatisticsProxy::OnBitrateAllocationUpdated( const VideoCodec& codec, const VideoBitrateAllocation& allocation) { int num_spatial_layers = 0; for (int i = 0; i < kMaxSpatialLayers; i++) { if (codec.spatialLayers[i].active) { num_spatial_layers++; } } int num_simulcast_streams = 0; for (int i = 0; i < kMaxSimulcastStreams; i++) { if (codec.simulcastStream[i].active) { num_simulcast_streams++; } } std::array spatial_layers; for (int i = 0; i < kMaxSpatialLayers; i++) { spatial_layers[i] = (allocation.GetSpatialLayerSum(i) > 0); } MutexLock lock(&mutex_); bw_limited_layers_ = allocation.is_bw_limited(); UpdateAdaptationStats(); if (spatial_layers != last_spatial_layer_use_) { // If the number of spatial layers has changed, the resolution change is // not due to quality limitations, it is because the configuration // changed. if (last_num_spatial_layers_ == num_spatial_layers && last_num_simulcast_streams_ == num_simulcast_streams) { ++stats_.quality_limitation_resolution_changes; } last_spatial_layer_use_ = spatial_layers; } last_num_spatial_layers_ = num_spatial_layers; last_num_simulcast_streams_ = num_simulcast_streams; } // Informes observer if an internal encoder scaler has reduced video // resolution or not. |is_scaled| is a flag indicating if the video is scaled // down. void SendStatisticsProxy::OnEncoderInternalScalerUpdate(bool is_scaled) { MutexLock lock(&mutex_); internal_encoder_scaler_ = is_scaled; UpdateAdaptationStats(); } // TODO(asapersson): Include fps changes. void SendStatisticsProxy::OnInitialQualityResolutionAdaptDown() { MutexLock lock(&mutex_); ++uma_container_->initial_quality_changes_.down; } void SendStatisticsProxy::TryUpdateInitialQualityResolutionAdaptUp( absl::optional old_quality_downscales, absl::optional updated_quality_downscales) { if (uma_container_->initial_quality_changes_.down == 0) return; if (old_quality_downscales.has_value() && old_quality_downscales.value() > 0 && updated_quality_downscales.value_or(-1) < old_quality_downscales.value()) { // Adapting up in quality. if (uma_container_->initial_quality_changes_.down > uma_container_->initial_quality_changes_.up) { ++uma_container_->initial_quality_changes_.up; } } } void SendStatisticsProxy::SetAdaptTimer(const MaskedAdaptationCounts& counts, StatsTimer* timer) { if (counts.resolution_adaptations || counts.num_framerate_reductions) { // Adaptation enabled. if (!stats_.suspended) timer->Start(clock_->TimeInMilliseconds()); return; } timer->Stop(clock_->TimeInMilliseconds()); } void SendStatisticsProxy::RtcpPacketTypesCounterUpdated( uint32_t ssrc, const RtcpPacketTypeCounter& packet_counter) { MutexLock lock(&mutex_); VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc); if (!stats) return; stats->rtcp_packet_type_counts = packet_counter; if (uma_container_->first_rtcp_stats_time_ms_ == -1) uma_container_->first_rtcp_stats_time_ms_ = clock_->TimeInMilliseconds(); } void SendStatisticsProxy::StatisticsUpdated(const RtcpStatistics& statistics, uint32_t ssrc) { MutexLock lock(&mutex_); VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc); if (!stats) return; stats->rtcp_stats = statistics; uma_container_->report_block_stats_.Store(ssrc, statistics); } void SendStatisticsProxy::OnReportBlockDataUpdated( ReportBlockData report_block_data) { MutexLock lock(&mutex_); VideoSendStream::StreamStats* stats = GetStatsEntry(report_block_data.report_block().source_ssrc); if (!stats) return; stats->report_block_data = std::move(report_block_data); } void SendStatisticsProxy::DataCountersUpdated( const StreamDataCounters& counters, uint32_t ssrc) { MutexLock lock(&mutex_); VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc); RTC_DCHECK(stats) << "DataCountersUpdated reported for unknown ssrc " << ssrc; if (stats->type == VideoSendStream::StreamStats::StreamType::kFlexfec) { // The same counters are reported for both the media ssrc and flexfec ssrc. // Bitrate stats are summed for all SSRCs. Use fec stats from media update. return; } stats->rtp_stats = counters; if (uma_container_->first_rtp_stats_time_ms_ == -1) { int64_t now_ms = clock_->TimeInMilliseconds(); uma_container_->first_rtp_stats_time_ms_ = now_ms; uma_container_->cpu_adapt_timer_.Restart(now_ms); uma_container_->quality_adapt_timer_.Restart(now_ms); } uma_container_->total_byte_counter_.Set(counters.transmitted.TotalBytes(), ssrc); uma_container_->padding_byte_counter_.Set(counters.transmitted.padding_bytes, ssrc); uma_container_->retransmit_byte_counter_.Set( counters.retransmitted.TotalBytes(), ssrc); uma_container_->fec_byte_counter_.Set(counters.fec.TotalBytes(), ssrc); switch (stats->type) { case VideoSendStream::StreamStats::StreamType::kMedia: uma_container_->media_byte_counter_.Set(counters.MediaPayloadBytes(), ssrc); break; case VideoSendStream::StreamStats::StreamType::kRtx: uma_container_->rtx_byte_counter_.Set(counters.transmitted.TotalBytes(), ssrc); break; case VideoSendStream::StreamStats::StreamType::kFlexfec: break; } } void SendStatisticsProxy::Notify(uint32_t total_bitrate_bps, uint32_t retransmit_bitrate_bps, uint32_t ssrc) { MutexLock lock(&mutex_); VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc); if (!stats) return; stats->total_bitrate_bps = total_bitrate_bps; stats->retransmit_bitrate_bps = retransmit_bitrate_bps; } void SendStatisticsProxy::FrameCountUpdated(const FrameCounts& frame_counts, uint32_t ssrc) { MutexLock lock(&mutex_); VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc); if (!stats) return; stats->frame_counts = frame_counts; } void SendStatisticsProxy::SendSideDelayUpdated(int avg_delay_ms, int max_delay_ms, uint64_t total_delay_ms, uint32_t ssrc) { MutexLock lock(&mutex_); VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc); if (!stats) return; stats->avg_delay_ms = avg_delay_ms; stats->max_delay_ms = max_delay_ms; stats->total_packet_send_delay_ms = total_delay_ms; uma_container_->delay_counter_.Add(avg_delay_ms); uma_container_->max_delay_counter_.Add(max_delay_ms); } void SendStatisticsProxy::StatsTimer::Start(int64_t now_ms) { if (start_ms == -1) start_ms = now_ms; } void SendStatisticsProxy::StatsTimer::Stop(int64_t now_ms) { if (start_ms != -1) { total_ms += now_ms - start_ms; start_ms = -1; } } void SendStatisticsProxy::StatsTimer::Restart(int64_t now_ms) { total_ms = 0; if (start_ms != -1) start_ms = now_ms; } void SendStatisticsProxy::SampleCounter::Add(int sample) { sum += sample; ++num_samples; } int SendStatisticsProxy::SampleCounter::Avg( int64_t min_required_samples) const { if (num_samples < min_required_samples || num_samples == 0) return -1; return static_cast((sum + (num_samples / 2)) / num_samples); } void SendStatisticsProxy::BoolSampleCounter::Add(bool sample) { if (sample) ++sum; ++num_samples; } void SendStatisticsProxy::BoolSampleCounter::Add(bool sample, int64_t count) { if (sample) sum += count; num_samples += count; } int SendStatisticsProxy::BoolSampleCounter::Percent( int64_t min_required_samples) const { return Fraction(min_required_samples, 100.0f); } int SendStatisticsProxy::BoolSampleCounter::Permille( int64_t min_required_samples) const { return Fraction(min_required_samples, 1000.0f); } int SendStatisticsProxy::BoolSampleCounter::Fraction( int64_t min_required_samples, float multiplier) const { if (num_samples < min_required_samples || num_samples == 0) return -1; return static_cast((sum * multiplier / num_samples) + 0.5f); } SendStatisticsProxy::MaskedAdaptationCounts SendStatisticsProxy::Adaptations::MaskedCpuCounts() const { return Mask(cpu_counts_, cpu_settings_); } SendStatisticsProxy::MaskedAdaptationCounts SendStatisticsProxy::Adaptations::MaskedQualityCounts() const { return Mask(quality_counts_, quality_settings_); } void SendStatisticsProxy::Adaptations::set_cpu_counts( const VideoAdaptationCounters& cpu_counts) { cpu_counts_ = cpu_counts; } void SendStatisticsProxy::Adaptations::set_quality_counts( const VideoAdaptationCounters& quality_counts) { quality_counts_ = quality_counts; } VideoAdaptationCounters SendStatisticsProxy::Adaptations::cpu_counts() const { return cpu_counts_; } VideoAdaptationCounters SendStatisticsProxy::Adaptations::quality_counts() const { return quality_counts_; } void SendStatisticsProxy::Adaptations::UpdateMaskingSettings( VideoStreamEncoderObserver::AdaptationSettings cpu_settings, VideoStreamEncoderObserver::AdaptationSettings quality_settings) { cpu_settings_ = std::move(cpu_settings); quality_settings_ = std::move(quality_settings); } SendStatisticsProxy::MaskedAdaptationCounts SendStatisticsProxy::Adaptations::Mask( const VideoAdaptationCounters& counters, const VideoStreamEncoderObserver::AdaptationSettings& settings) const { MaskedAdaptationCounts masked_counts; if (settings.resolution_scaling_enabled) { masked_counts.resolution_adaptations = counters.resolution_adaptations; } if (settings.framerate_scaling_enabled) { masked_counts.num_framerate_reductions = counters.fps_adaptations; } return masked_counts; } } // namespace webrtc