/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/agc2/limiter.h" #include #include #include #include "api/array_view.h" #include "modules/audio_processing/agc2/agc2_common.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/checks.h" #include "rtc_base/numerics/safe_minmax.h" namespace webrtc { namespace { // This constant affects the way scaling factors are interpolated for the first // sub-frame of a frame. Only in the case in which the first sub-frame has an // estimated level which is greater than the that of the previous analyzed // sub-frame, linear interpolation is replaced with a power function which // reduces the chances of over-shooting (and hence saturation), however reducing // the fixed gain effectiveness. constexpr float kAttackFirstSubframeInterpolationPower = 8.f; void InterpolateFirstSubframe(float last_factor, float current_factor, rtc::ArrayView subframe) { const auto n = subframe.size(); constexpr auto p = kAttackFirstSubframeInterpolationPower; for (size_t i = 0; i < n; ++i) { subframe[i] = std::pow(1.f - i / n, p) * (last_factor - current_factor) + current_factor; } } void ComputePerSampleSubframeFactors( const std::array& scaling_factors, size_t samples_per_channel, rtc::ArrayView per_sample_scaling_factors) { const size_t num_subframes = scaling_factors.size() - 1; const size_t subframe_size = rtc::CheckedDivExact(samples_per_channel, num_subframes); // Handle first sub-frame differently in case of attack. const bool is_attack = scaling_factors[0] > scaling_factors[1]; if (is_attack) { InterpolateFirstSubframe( scaling_factors[0], scaling_factors[1], rtc::ArrayView( per_sample_scaling_factors.subview(0, subframe_size))); } for (size_t i = is_attack ? 1 : 0; i < num_subframes; ++i) { const size_t subframe_start = i * subframe_size; const float scaling_start = scaling_factors[i]; const float scaling_end = scaling_factors[i + 1]; const float scaling_diff = (scaling_end - scaling_start) / subframe_size; for (size_t j = 0; j < subframe_size; ++j) { per_sample_scaling_factors[subframe_start + j] = scaling_start + scaling_diff * j; } } } void ScaleSamples(rtc::ArrayView per_sample_scaling_factors, AudioFrameView signal) { const size_t samples_per_channel = signal.samples_per_channel(); RTC_DCHECK_EQ(samples_per_channel, per_sample_scaling_factors.size()); for (size_t i = 0; i < signal.num_channels(); ++i) { auto channel = signal.channel(i); for (size_t j = 0; j < samples_per_channel; ++j) { channel[j] = rtc::SafeClamp(channel[j] * per_sample_scaling_factors[j], kMinFloatS16Value, kMaxFloatS16Value); } } } void CheckLimiterSampleRate(size_t sample_rate_hz) { // Check that per_sample_scaling_factors_ is large enough. RTC_DCHECK_LE(sample_rate_hz, kMaximalNumberOfSamplesPerChannel * 1000 / kFrameDurationMs); } } // namespace Limiter::Limiter(size_t sample_rate_hz, ApmDataDumper* apm_data_dumper, const std::string& histogram_name) : interp_gain_curve_(apm_data_dumper, histogram_name), level_estimator_(sample_rate_hz, apm_data_dumper), apm_data_dumper_(apm_data_dumper) { CheckLimiterSampleRate(sample_rate_hz); } Limiter::~Limiter() = default; void Limiter::Process(AudioFrameView signal) { const auto level_estimate = level_estimator_.ComputeLevel(signal); RTC_DCHECK_EQ(level_estimate.size() + 1, scaling_factors_.size()); scaling_factors_[0] = last_scaling_factor_; std::transform(level_estimate.begin(), level_estimate.end(), scaling_factors_.begin() + 1, [this](float x) { return interp_gain_curve_.LookUpGainToApply(x); }); const size_t samples_per_channel = signal.samples_per_channel(); RTC_DCHECK_LE(samples_per_channel, kMaximalNumberOfSamplesPerChannel); auto per_sample_scaling_factors = rtc::ArrayView( &per_sample_scaling_factors_[0], samples_per_channel); ComputePerSampleSubframeFactors(scaling_factors_, samples_per_channel, per_sample_scaling_factors); ScaleSamples(per_sample_scaling_factors, signal); last_scaling_factor_ = scaling_factors_.back(); // Dump data for debug. apm_data_dumper_->DumpRaw("agc2_limiter_last_scaling_factor", last_scaling_factor_); apm_data_dumper_->DumpRaw( "agc2_limiter_region", static_cast(interp_gain_curve_.get_stats().region)); } InterpolatedGainCurve::Stats Limiter::GetGainCurveStats() const { return interp_gain_curve_.get_stats(); } void Limiter::SetSampleRate(size_t sample_rate_hz) { CheckLimiterSampleRate(sample_rate_hz); level_estimator_.SetSampleRate(sample_rate_hz); } void Limiter::Reset() { level_estimator_.Reset(); } float Limiter::LastAudioLevel() const { return level_estimator_.LastAudioLevel(); } } // namespace webrtc