#include "v2/NativeNetworkingImpl.h" #include "p2p/base/basic_packet_socket_factory.h" #include "p2p/client/basic_port_allocator.h" #include "p2p/base/p2p_transport_channel.h" #include "p2p/base/basic_async_resolver_factory.h" #include "api/packet_socket_factory.h" #include "rtc_base/rtc_certificate_generator.h" #include "p2p/base/ice_credentials_iterator.h" #include "api/jsep_ice_candidate.h" #include "p2p/base/dtls_transport.h" #include "p2p/base/dtls_transport_factory.h" #include "pc/dtls_srtp_transport.h" #include "pc/dtls_transport.h" #include "pc/jsep_transport_controller.h" #include "api/async_dns_resolver.h" #include "TurnCustomizerImpl.h" #include "ReflectorRelayPortFactory.h" #include "SctpDataChannelProviderInterfaceImpl.h" #include "StaticThreads.h" #include "platform/PlatformInterface.h" #include "p2p/base/turn_port.h" #include "ReflectorPort.h" #include "FieldTrialsConfig.h" namespace tgcalls { namespace { class CryptStringImpl : public rtc::CryptStringImpl { public: CryptStringImpl(std::string const &value) : _value(value) { } virtual ~CryptStringImpl() override { } virtual size_t GetLength() const override { return _value.size(); } virtual void CopyTo(char* dest, bool nullterminate) const override { memcpy(dest, _value.data(), _value.size()); if (nullterminate) { dest[_value.size()] = 0; } } virtual std::string UrlEncode() const override { return _value; } virtual CryptStringImpl* Copy() const override { return new CryptStringImpl(_value); } virtual void CopyRawTo(std::vector* dest) const override { dest->resize(_value.size()); memcpy(dest->data(), _value.data(), _value.size()); } private: std::string _value; }; class WrappedAsyncPacketSocket : public rtc::AsyncPacketSocket { public: WrappedAsyncPacketSocket(std::unique_ptr &&wrappedSocket) : _wrappedSocket(std::move(wrappedSocket)) { _wrappedSocket->SignalReadPacket.connect(this, &WrappedAsyncPacketSocket::onReadPacket); _wrappedSocket->SignalSentPacket.connect(this, &WrappedAsyncPacketSocket::onSentPacket); _wrappedSocket->SignalReadyToSend.connect(this, &WrappedAsyncPacketSocket::onReadyToSend); _wrappedSocket->SignalAddressReady.connect(this, &WrappedAsyncPacketSocket::onAddressReady); _wrappedSocket->SignalConnect.connect(this, &WrappedAsyncPacketSocket::onConnect); _wrappedSocket->SubscribeClose(this, [this](AsyncPacketSocket* socket, int error) { onClose(socket, error); }); } virtual ~WrappedAsyncPacketSocket() override { _wrappedSocket->SignalReadPacket.disconnect(this); _wrappedSocket->SignalSentPacket.disconnect(this); _wrappedSocket->SignalReadyToSend.disconnect(this); _wrappedSocket->SignalAddressReady.disconnect(this); _wrappedSocket->SignalConnect.disconnect(this); _wrappedSocket->UnsubscribeClose(this); _wrappedSocket.reset(); } virtual rtc::SocketAddress GetLocalAddress() const override { return _wrappedSocket->GetLocalAddress(); } virtual rtc::SocketAddress GetRemoteAddress() const override { return _wrappedSocket->GetRemoteAddress(); } virtual int Send(const void* pv, size_t cb, const rtc::PacketOptions& options) override { return _wrappedSocket->Send(pv, cb, options); } virtual int SendTo(const void* pv, size_t cb, const rtc::SocketAddress& addr, const rtc::PacketOptions& options) override { return _wrappedSocket->SendTo(pv, cb, addr, options); } virtual int Close() override { return _wrappedSocket->Close(); } virtual State GetState() const override { return _wrappedSocket->GetState(); } virtual int GetOption(rtc::Socket::Option opt, int* value) override { return _wrappedSocket->GetOption(opt, value); } virtual int SetOption(rtc::Socket::Option opt, int value) override { return _wrappedSocket->SetOption(opt, value); } virtual int GetError() const override { return _wrappedSocket->GetError(); } virtual void SetError(int error) override { _wrappedSocket->SetError(error); } private: void onReadPacket(AsyncPacketSocket *socket, const char *data, size_t size, const rtc::SocketAddress &address, const int64_t ×tamp) { SignalReadPacket.emit(this, data, size, address, timestamp); } void onSentPacket(AsyncPacketSocket *socket, const rtc::SentPacket &packet) { SignalSentPacket.emit(this, packet); } void onReadyToSend(AsyncPacketSocket *socket) { SignalReadyToSend.emit(this); } void onAddressReady(AsyncPacketSocket *socket, const rtc::SocketAddress &address) { SignalAddressReady.emit(this, address); } void onConnect(AsyncPacketSocket *socket) { SignalConnect.emit(this); } void onClose(AsyncPacketSocket *socket, int value) { SignalClose(this, value); } private: std::unique_ptr _wrappedSocket; }; class WrappedBasicPacketSocketFactory : public rtc::BasicPacketSocketFactory { public: explicit WrappedBasicPacketSocketFactory(rtc::SocketFactory* socket_factory) : rtc::BasicPacketSocketFactory(socket_factory) { } virtual ~WrappedBasicPacketSocketFactory() override { } rtc::AsyncPacketSocket* CreateUdpSocket(const rtc::SocketAddress& local_address, uint16_t min_port, uint16_t max_port) override { rtc::AsyncPacketSocket *socket = rtc::BasicPacketSocketFactory::CreateUdpSocket(local_address, min_port, max_port); if (socket) { std::unique_ptr socketPtr; socketPtr.reset(socket); return new WrappedAsyncPacketSocket(std::move(socketPtr)); } else { return nullptr; } } private: }; } InstanceNetworking::ConnectionDescription::CandidateDescription InstanceNetworking::connectionDescriptionFromCandidate(cricket::Candidate const &candidate) { InstanceNetworking::ConnectionDescription::CandidateDescription result; result.type = candidate.type(); result.protocol = candidate.protocol(); result.address = candidate.address().ToString(); return result; } webrtc::CryptoOptions NativeNetworkingImpl::getDefaulCryptoOptions() { auto options = webrtc::CryptoOptions(); options.srtp.enable_aes128_sha1_80_crypto_cipher = true; options.srtp.enable_gcm_crypto_suites = true; return options; } NativeNetworkingImpl::NativeNetworkingImpl(Configuration &&configuration) : _threads(std::move(configuration.threads)), _isOutgoing(configuration.isOutgoing), _enableStunMarking(configuration.enableStunMarking), _enableTCP(configuration.enableTCP), _enableP2P(configuration.enableP2P), _rtcServers(configuration.rtcServers), _proxy(configuration.proxy), _stateUpdated(std::move(configuration.stateUpdated)), _candidateGathered(std::move(configuration.candidateGathered)), _transportMessageReceived(std::move(configuration.transportMessageReceived)), _rtcpPacketReceived(std::move(configuration.rtcpPacketReceived)), _dataChannelStateUpdated(configuration.dataChannelStateUpdated), _dataChannelMessageReceived(configuration.dataChannelMessageReceived) { assert(_threads->getNetworkThread()->IsCurrent()); _localIceParameters = PeerIceParameters(rtc::CreateRandomString(cricket::ICE_UFRAG_LENGTH), rtc::CreateRandomString(cricket::ICE_PWD_LENGTH), true); _localCertificate = rtc::RTCCertificateGenerator::GenerateCertificate(rtc::KeyParams(rtc::KT_ECDSA), absl::nullopt); _networkMonitorFactory = PlatformInterface::SharedInstance()->createNetworkMonitorFactory(); _socketFactory.reset(new rtc::BasicPacketSocketFactory(_threads->getNetworkThread()->socketserver())); _networkManager = std::make_unique(_networkMonitorFactory.get(), _threads->getNetworkThread()->socketserver()); _asyncResolverFactory = std::make_unique(std::make_unique()); _dtlsSrtpTransport = std::make_unique(true, fieldTrialsBasedConfig); _dtlsSrtpTransport->SetDtlsTransports(nullptr, nullptr); _dtlsSrtpTransport->SetActiveResetSrtpParams(false); _dtlsSrtpTransport->SignalReadyToSend.connect(this, &NativeNetworkingImpl::DtlsReadyToSend); //_dtlsSrtpTransport->SignalRtpPacketReceived.connect(this, &NativeNetworkingImpl::RtpPacketReceived_n); _dtlsSrtpTransport->SignalRtcpPacketReceived.connect(this, &NativeNetworkingImpl::OnRtcpPacketReceived_n); resetDtlsSrtpTransport(); } NativeNetworkingImpl::~NativeNetworkingImpl() { assert(_threads->getNetworkThread()->IsCurrent()); RTC_LOG(LS_INFO) << "NativeNetworkingImpl::~NativeNetworkingImpl()"; _dtlsSrtpTransport.reset(); _dtlsTransport.reset(); _dataChannelInterface.reset(); _transportChannel.reset(); _asyncResolverFactory.reset(); _portAllocator.reset(); _networkManager.reset(); _socketFactory.reset(); _networkMonitorFactory.reset(); } void NativeNetworkingImpl::resetDtlsSrtpTransport() { if (_enableStunMarking) { _turnCustomizer.reset(new TurnCustomizerImpl()); } _relayPortFactory.reset(new ReflectorRelayPortFactory(_rtcServers)); _portAllocator.reset(new cricket::BasicPortAllocator(_networkManager.get(), _socketFactory.get(), _turnCustomizer.get(), _relayPortFactory.get())); uint32_t flags = _portAllocator->flags(); flags |= //cricket::PORTALLOCATOR_ENABLE_SHARED_SOCKET | cricket::PORTALLOCATOR_ENABLE_IPV6 | cricket::PORTALLOCATOR_ENABLE_IPV6_ON_WIFI; /*if (_proxy) { rtc::ProxyInfo proxyInfo; proxyInfo.type = rtc::ProxyType::PROXY_SOCKS5; proxyInfo.address = rtc::SocketAddress(_proxy->host, _proxy->port); proxyInfo.username = _proxy->login; proxyInfo.password = rtc::CryptString(CryptStringImpl(_proxy->password)); _portAllocator->set_proxy("t/1.0", proxyInfo); flags &= ~cricket::PORTALLOCATOR_DISABLE_TCP; } else */{ if (!_enableTCP) { flags |= cricket::PORTALLOCATOR_DISABLE_TCP; } } if (_proxy || !_enableP2P) { flags |= cricket::PORTALLOCATOR_DISABLE_UDP; flags |= cricket::PORTALLOCATOR_DISABLE_STUN; uint32_t candidateFilter = _portAllocator->candidate_filter(); candidateFilter &= ~(cricket::CF_REFLEXIVE); _portAllocator->SetCandidateFilter(candidateFilter); } _portAllocator->set_step_delay(cricket::kMinimumStepDelay); _portAllocator->set_flags(flags); _portAllocator->Initialize(); cricket::ServerAddresses stunServers; std::vector turnServers; for (auto &server : _rtcServers) { if (server.isTcp) { continue; } if (server.isTurn) { turnServers.push_back(cricket::RelayServerConfig( rtc::SocketAddress(server.host, server.port), server.login, server.password, cricket::PROTO_UDP )); } else { rtc::SocketAddress stunAddress = rtc::SocketAddress(server.host, server.port); stunServers.insert(stunAddress); } } _portAllocator->SetConfiguration(stunServers, turnServers, 0, webrtc::NO_PRUNE, _turnCustomizer.get()); webrtc::IceTransportInit iceTransportInit; iceTransportInit.set_port_allocator(_portAllocator.get()); iceTransportInit.set_async_dns_resolver_factory(_asyncResolverFactory.get()); _transportChannel = cricket::P2PTransportChannel::Create("transport", 0, std::move(iceTransportInit)); cricket::IceConfig iceConfig; iceConfig.continual_gathering_policy = cricket::GATHER_CONTINUALLY; iceConfig.prioritize_most_likely_candidate_pairs = true; iceConfig.regather_on_failed_networks_interval = 8000; _transportChannel->SetIceConfig(iceConfig); cricket::IceParameters localIceParameters( _localIceParameters.ufrag, _localIceParameters.pwd, _localIceParameters.supportsRenomination ); _transportChannel->SetIceParameters(localIceParameters); _transportChannel->SetIceRole(_isOutgoing ? cricket::ICEROLE_CONTROLLING : cricket::ICEROLE_CONTROLLED); _transportChannel->SetRemoteIceMode(cricket::ICEMODE_FULL); _transportChannel->SignalCandidateGathered.connect(this, &NativeNetworkingImpl::candidateGathered); _transportChannel->SignalIceTransportStateChanged.connect(this, &NativeNetworkingImpl::transportStateChanged); _transportChannel->SignalCandidatePairChanged.connect(this, &NativeNetworkingImpl::candidatePairChanged); _transportChannel->SignalNetworkRouteChanged.connect(this, &NativeNetworkingImpl::transportRouteChanged); webrtc::CryptoOptions cryptoOptions = NativeNetworkingImpl::getDefaulCryptoOptions(); _dtlsTransport.reset(new cricket::DtlsTransport(_transportChannel.get(), cryptoOptions, nullptr)); _dtlsTransport->SignalWritableState.connect( this, &NativeNetworkingImpl::OnTransportWritableState_n); _dtlsTransport->SignalReceivingState.connect( this, &NativeNetworkingImpl::OnTransportReceivingState_n); _dtlsTransport->SetLocalCertificate(_localCertificate); _dtlsSrtpTransport->SetDtlsTransports(_dtlsTransport.get(), nullptr); } void NativeNetworkingImpl::start() { _transportChannel->MaybeStartGathering(); const auto weak = std::weak_ptr(shared_from_this()); _dataChannelInterface.reset(new SctpDataChannelProviderInterfaceImpl( _dtlsTransport.get(), _isOutgoing, [weak, threads = _threads](bool state) { assert(threads->getNetworkThread()->IsCurrent()); const auto strong = weak.lock(); if (!strong) { return; } strong->_dataChannelStateUpdated(state); }, [weak, threads = _threads]() { assert(threads->getNetworkThread()->IsCurrent()); const auto strong = weak.lock(); if (!strong) { return; } //strong->restartDataChannel(); }, [weak, threads = _threads](std::string const &message) { assert(threads->getNetworkThread()->IsCurrent()); const auto strong = weak.lock(); if (!strong) { return; } strong->_dataChannelMessageReceived(message); }, _threads )); _lastDisconnectedTimestamp = rtc::TimeMillis(); checkConnectionTimeout(); } void NativeNetworkingImpl::stop() { _transportChannel->SignalCandidateGathered.disconnect(this); _transportChannel->SignalIceTransportStateChanged.disconnect(this); _transportChannel->SignalReadPacket.disconnect(this); _transportChannel->SignalNetworkRouteChanged.disconnect(this); _dtlsTransport->SignalWritableState.disconnect(this); _dtlsTransport->SignalReceivingState.disconnect(this); _dtlsSrtpTransport->SetDtlsTransports(nullptr, nullptr); _dataChannelInterface.reset(); _dtlsTransport.reset(); _transportChannel.reset(); _portAllocator.reset(); _localIceParameters = PeerIceParameters(rtc::CreateRandomString(cricket::ICE_UFRAG_LENGTH), rtc::CreateRandomString(cricket::ICE_PWD_LENGTH), true); _localCertificate = rtc::RTCCertificateGenerator::GenerateCertificate(rtc::KeyParams(rtc::KT_ECDSA), absl::nullopt); } PeerIceParameters NativeNetworkingImpl::getLocalIceParameters() { return _localIceParameters; } std::unique_ptr NativeNetworkingImpl::getLocalFingerprint() { auto certificate = _localCertificate; if (!certificate) { return nullptr; } return rtc::SSLFingerprint::CreateFromCertificate(*certificate); } void NativeNetworkingImpl::setRemoteParams(PeerIceParameters const &remoteIceParameters, rtc::SSLFingerprint *fingerprint, std::string const &sslSetup) { _remoteIceParameters = remoteIceParameters; cricket::IceParameters parameters( remoteIceParameters.ufrag, remoteIceParameters.pwd, remoteIceParameters.supportsRenomination ); _transportChannel->SetRemoteIceParameters(parameters); if (sslSetup == "active") { _dtlsTransport->SetDtlsRole(rtc::SSLRole::SSL_SERVER); } else if (sslSetup == "passive") { _dtlsTransport->SetDtlsRole(rtc::SSLRole::SSL_CLIENT); } else { _dtlsTransport->SetDtlsRole(_isOutgoing ? rtc::SSLRole::SSL_CLIENT : rtc::SSLRole::SSL_SERVER); } if (fingerprint) { _dtlsTransport->SetRemoteFingerprint(fingerprint->algorithm, fingerprint->digest.data(), fingerprint->digest.size()); } } void NativeNetworkingImpl::addCandidates(std::vector const &candidates) { for (const auto &candidate : candidates) { _transportChannel->AddRemoteCandidate(candidate); } } void NativeNetworkingImpl::sendDataChannelMessage(std::string const &message) { if (_dataChannelInterface) { _dataChannelInterface->sendDataChannelMessage(message); } } webrtc::RtpTransport *NativeNetworkingImpl::getRtpTransport() { return _dtlsSrtpTransport.get(); } void NativeNetworkingImpl::checkConnectionTimeout() { const auto weak = std::weak_ptr(shared_from_this()); _threads->getNetworkThread()->PostDelayedTask([weak]() { auto strong = weak.lock(); if (!strong) { return; } int64_t currentTimestamp = rtc::TimeMillis(); const int64_t maxTimeout = 20000; if (!strong->_isConnected && strong->_lastDisconnectedTimestamp + maxTimeout < currentTimestamp) { RTC_LOG(LS_INFO) << "NativeNetworkingImpl timeout " << (currentTimestamp - strong->_lastDisconnectedTimestamp) << " ms"; strong->_isFailed = true; strong->notifyStateUpdated(); } strong->checkConnectionTimeout(); }, webrtc::TimeDelta::Millis(1000)); } void NativeNetworkingImpl::candidateGathered(cricket::IceTransportInternal *transport, const cricket::Candidate &candidate) { assert(_threads->getNetworkThread()->IsCurrent()); _candidateGathered(candidate); } void NativeNetworkingImpl::candidateGatheringState(cricket::IceTransportInternal *transport) { assert(_threads->getNetworkThread()->IsCurrent()); } void NativeNetworkingImpl::OnTransportWritableState_n(rtc::PacketTransportInternal *transport) { assert(_threads->getNetworkThread()->IsCurrent()); UpdateAggregateStates_n(); } void NativeNetworkingImpl::OnTransportReceivingState_n(rtc::PacketTransportInternal *transport) { assert(_threads->getNetworkThread()->IsCurrent()); UpdateAggregateStates_n(); } void NativeNetworkingImpl::DtlsReadyToSend(bool isReadyToSend) { UpdateAggregateStates_n(); if (isReadyToSend) { const auto weak = std::weak_ptr(shared_from_this()); _threads->getNetworkThread()->PostTask([weak]() { const auto strong = weak.lock(); if (!strong) { return; } strong->UpdateAggregateStates_n(); }); } } void NativeNetworkingImpl::transportStateChanged(cricket::IceTransportInternal *transport) { UpdateAggregateStates_n(); } void NativeNetworkingImpl::transportReadyToSend(cricket::IceTransportInternal *transport) { assert(_threads->getNetworkThread()->IsCurrent()); } void NativeNetworkingImpl::transportRouteChanged(absl::optional route) { assert(_threads->getNetworkThread()->IsCurrent()); if (route.has_value()) { /*cricket::IceTransportStats iceTransportStats; if (_transportChannel->GetStats(&iceTransportStats)) { }*/ RTC_LOG(LS_INFO) << "NativeNetworkingImpl route changed: " << route->DebugString(); bool localIsWifi = route->local.adapter_type() == rtc::AdapterType::ADAPTER_TYPE_WIFI; bool remoteIsWifi = route->remote.adapter_type() == rtc::AdapterType::ADAPTER_TYPE_WIFI; RTC_LOG(LS_INFO) << "NativeNetworkingImpl is wifi: local=" << localIsWifi << ", remote=" << remoteIsWifi; std::string localDescription = route->local.uses_turn() ? "turn" : "p2p"; std::string remoteDescription = route->remote.uses_turn() ? "turn" : "p2p"; RouteDescription routeDescription(localDescription, remoteDescription); if (!_currentRouteDescription || routeDescription != _currentRouteDescription.value()) { _currentRouteDescription = std::move(routeDescription); notifyStateUpdated(); } } } void NativeNetworkingImpl::candidatePairChanged(cricket::CandidatePairChangeEvent const &event) { ConnectionDescription connectionDescription; connectionDescription.local = InstanceNetworking::connectionDescriptionFromCandidate(event.selected_candidate_pair.local); connectionDescription.remote = InstanceNetworking::connectionDescriptionFromCandidate(event.selected_candidate_pair.remote); if (!_currentConnectionDescription || _currentConnectionDescription.value() != connectionDescription) { _currentConnectionDescription = std::move(connectionDescription); notifyStateUpdated(); } } void NativeNetworkingImpl::RtpPacketReceived_n(rtc::CopyOnWriteBuffer *packet, int64_t packet_time_us, bool isUnresolved) { if (_transportMessageReceived) { _transportMessageReceived(*packet, isUnresolved); } } void NativeNetworkingImpl::OnRtcpPacketReceived_n(rtc::CopyOnWriteBuffer *packet, int64_t packet_time_us) { if (_rtcpPacketReceived) { _rtcpPacketReceived(*packet, packet_time_us); } } void NativeNetworkingImpl::UpdateAggregateStates_n() { assert(_threads->getNetworkThread()->IsCurrent()); auto state = _transportChannel->GetIceTransportState(); bool isConnected = false; switch (state) { case webrtc::IceTransportState::kConnected: case webrtc::IceTransportState::kCompleted: isConnected = true; break; default: break; } if (!_dtlsSrtpTransport->IsWritable(false)) { isConnected = false; } if (_isConnected != isConnected) { _isConnected = isConnected; if (!isConnected) { _lastDisconnectedTimestamp = rtc::TimeMillis(); } notifyStateUpdated(); if (_dataChannelInterface) { _dataChannelInterface->updateIsConnected(isConnected); } } } void NativeNetworkingImpl::notifyStateUpdated() { NativeNetworkingImpl::State emitState; emitState.isReadyToSendData = _isConnected; emitState.route = _currentRouteDescription; emitState.connection = _currentConnectionDescription; emitState.isFailed = _isFailed; _stateUpdated(emitState); } void NativeNetworkingImpl::sctpReadyToSendData() { } void NativeNetworkingImpl::sctpDataReceived(const cricket::ReceiveDataParams& params, const rtc::CopyOnWriteBuffer& buffer) { } } // namespace tgcalls