/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include "../internal.h" #define OPENSSL_DH_MAX_MODULUS_BITS 10000 static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT; DH *DH_new(void) { DH *dh = OPENSSL_malloc(sizeof(DH)); if (dh == NULL) { OPENSSL_PUT_ERROR(DH, ERR_R_MALLOC_FAILURE); return NULL; } OPENSSL_memset(dh, 0, sizeof(DH)); CRYPTO_MUTEX_init(&dh->method_mont_p_lock); dh->references = 1; CRYPTO_new_ex_data(&dh->ex_data); return dh; } void DH_free(DH *dh) { if (dh == NULL) { return; } if (!CRYPTO_refcount_dec_and_test_zero(&dh->references)) { return; } CRYPTO_free_ex_data(&g_ex_data_class, dh, &dh->ex_data); BN_MONT_CTX_free(dh->method_mont_p); BN_clear_free(dh->p); BN_clear_free(dh->g); BN_clear_free(dh->q); BN_clear_free(dh->j); OPENSSL_free(dh->seed); BN_clear_free(dh->counter); BN_clear_free(dh->pub_key); BN_clear_free(dh->priv_key); CRYPTO_MUTEX_cleanup(&dh->method_mont_p_lock); OPENSSL_free(dh); } void DH_get0_key(const DH *dh, const BIGNUM **out_pub_key, const BIGNUM **out_priv_key) { if (out_pub_key != NULL) { *out_pub_key = dh->pub_key; } if (out_priv_key != NULL) { *out_priv_key = dh->priv_key; } } int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) { if (pub_key != NULL) { BN_free(dh->pub_key); dh->pub_key = pub_key; } if (priv_key != NULL) { BN_free(dh->priv_key); dh->priv_key = priv_key; } return 1; } void DH_get0_pqg(const DH *dh, const BIGNUM **out_p, const BIGNUM **out_q, const BIGNUM **out_g) { if (out_p != NULL) { *out_p = dh->p; } if (out_q != NULL) { *out_q = dh->q; } if (out_g != NULL) { *out_g = dh->g; } } int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) { if ((dh->p == NULL && p == NULL) || (dh->g == NULL && g == NULL)) { return 0; } if (p != NULL) { BN_free(dh->p); dh->p = p; } if (q != NULL) { BN_free(dh->q); dh->q = q; } if (g != NULL) { BN_free(dh->g); dh->g = g; } return 1; } int DH_generate_parameters_ex(DH *dh, int prime_bits, int generator, BN_GENCB *cb) { // We generate DH parameters as follows // find a prime q which is prime_bits/2 bits long. // p=(2*q)+1 or (p-1)/2 = q // For this case, g is a generator if // g^((p-1)/q) mod p != 1 for values of q which are the factors of p-1. // Since the factors of p-1 are q and 2, we just need to check // g^2 mod p != 1 and g^q mod p != 1. // // Having said all that, // there is another special case method for the generators 2, 3 and 5. // for 2, p mod 24 == 11 // for 3, p mod 12 == 5 <<<<< does not work for safe primes. // for 5, p mod 10 == 3 or 7 // // Thanks to Phil Karn for the pointers about the // special generators and for answering some of my questions. // // I've implemented the second simple method :-). // Since DH should be using a safe prime (both p and q are prime), // this generator function can take a very very long time to run. // Actually there is no reason to insist that 'generator' be a generator. // It's just as OK (and in some sense better) to use a generator of the // order-q subgroup. BIGNUM *t1, *t2; int g, ok = 0; BN_CTX *ctx = NULL; ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } BN_CTX_start(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); if (t1 == NULL || t2 == NULL) { goto err; } // Make sure |dh| has the necessary elements if (dh->p == NULL) { dh->p = BN_new(); if (dh->p == NULL) { goto err; } } if (dh->g == NULL) { dh->g = BN_new(); if (dh->g == NULL) { goto err; } } if (generator <= 1) { OPENSSL_PUT_ERROR(DH, DH_R_BAD_GENERATOR); goto err; } if (generator == DH_GENERATOR_2) { if (!BN_set_word(t1, 24)) { goto err; } if (!BN_set_word(t2, 11)) { goto err; } g = 2; } else if (generator == DH_GENERATOR_5) { if (!BN_set_word(t1, 10)) { goto err; } if (!BN_set_word(t2, 3)) { goto err; } // BN_set_word(t3,7); just have to miss // out on these ones :-( g = 5; } else { // in the general case, don't worry if 'generator' is a // generator or not: since we are using safe primes, // it will generate either an order-q or an order-2q group, // which both is OK if (!BN_set_word(t1, 2)) { goto err; } if (!BN_set_word(t2, 1)) { goto err; } g = generator; } if (!BN_generate_prime_ex(dh->p, prime_bits, 1, t1, t2, cb)) { goto err; } if (!BN_GENCB_call(cb, 3, 0)) { goto err; } if (!BN_set_word(dh->g, g)) { goto err; } ok = 1; err: if (!ok) { OPENSSL_PUT_ERROR(DH, ERR_R_BN_LIB); } if (ctx != NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx); } return ok; } int DH_generate_key(DH *dh) { int ok = 0; int generate_new_key = 0; BN_CTX *ctx = NULL; BIGNUM *pub_key = NULL, *priv_key = NULL; if (BN_num_bits(dh->p) > OPENSSL_DH_MAX_MODULUS_BITS) { OPENSSL_PUT_ERROR(DH, DH_R_MODULUS_TOO_LARGE); goto err; } ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } if (dh->priv_key == NULL) { priv_key = BN_new(); if (priv_key == NULL) { goto err; } generate_new_key = 1; } else { priv_key = dh->priv_key; } if (dh->pub_key == NULL) { pub_key = BN_new(); if (pub_key == NULL) { goto err; } } else { pub_key = dh->pub_key; } if (!BN_MONT_CTX_set_locked(&dh->method_mont_p, &dh->method_mont_p_lock, dh->p, ctx)) { goto err; } if (generate_new_key) { if (dh->q) { if (!BN_rand_range_ex(priv_key, 2, dh->q)) { goto err; } } else { // secret exponent length unsigned priv_bits = dh->priv_length; if (priv_bits == 0) { const unsigned p_bits = BN_num_bits(dh->p); if (p_bits == 0) { goto err; } priv_bits = p_bits - 1; } if (!BN_rand(priv_key, priv_bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) { goto err; } } } if (!BN_mod_exp_mont_consttime(pub_key, dh->g, priv_key, dh->p, ctx, dh->method_mont_p)) { goto err; } dh->pub_key = pub_key; dh->priv_key = priv_key; ok = 1; err: if (ok != 1) { OPENSSL_PUT_ERROR(DH, ERR_R_BN_LIB); } if (dh->pub_key == NULL) { BN_free(pub_key); } if (dh->priv_key == NULL) { BN_free(priv_key); } BN_CTX_free(ctx); return ok; } int DH_compute_key(unsigned char *out, const BIGNUM *peers_key, DH *dh) { BN_CTX *ctx = NULL; BIGNUM *shared_key; int ret = -1; int check_result; if (BN_num_bits(dh->p) > OPENSSL_DH_MAX_MODULUS_BITS) { OPENSSL_PUT_ERROR(DH, DH_R_MODULUS_TOO_LARGE); goto err; } ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } BN_CTX_start(ctx); shared_key = BN_CTX_get(ctx); if (shared_key == NULL) { goto err; } if (dh->priv_key == NULL) { OPENSSL_PUT_ERROR(DH, DH_R_NO_PRIVATE_VALUE); goto err; } if (!BN_MONT_CTX_set_locked(&dh->method_mont_p, &dh->method_mont_p_lock, dh->p, ctx)) { goto err; } if (!DH_check_pub_key(dh, peers_key, &check_result) || check_result) { OPENSSL_PUT_ERROR(DH, DH_R_INVALID_PUBKEY); goto err; } if (!BN_mod_exp_mont_consttime(shared_key, peers_key, dh->priv_key, dh->p, ctx, dh->method_mont_p)) { OPENSSL_PUT_ERROR(DH, ERR_R_BN_LIB); goto err; } ret = BN_bn2bin(shared_key, out); err: if (ctx != NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx); } return ret; } int DH_size(const DH *dh) { return BN_num_bytes(dh->p); } unsigned DH_num_bits(const DH *dh) { return BN_num_bits(dh->p); } int DH_up_ref(DH *dh) { CRYPTO_refcount_inc(&dh->references); return 1; } static int int_dh_bn_cpy(BIGNUM **dst, const BIGNUM *src) { BIGNUM *a = NULL; if (src) { a = BN_dup(src); if (!a) { return 0; } } BN_free(*dst); *dst = a; return 1; } static int int_dh_param_copy(DH *to, const DH *from, int is_x942) { if (is_x942 == -1) { is_x942 = !!from->q; } if (!int_dh_bn_cpy(&to->p, from->p) || !int_dh_bn_cpy(&to->g, from->g)) { return 0; } if (!is_x942) { return 1; } if (!int_dh_bn_cpy(&to->q, from->q) || !int_dh_bn_cpy(&to->j, from->j)) { return 0; } OPENSSL_free(to->seed); to->seed = NULL; to->seedlen = 0; if (from->seed) { to->seed = BUF_memdup(from->seed, from->seedlen); if (!to->seed) { return 0; } to->seedlen = from->seedlen; } return 1; } DH *DHparams_dup(const DH *dh) { DH *ret = DH_new(); if (!ret) { return NULL; } if (!int_dh_param_copy(ret, dh, -1)) { DH_free(ret); return NULL; } return ret; } int DH_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, free_func)) { return -1; } return index; } int DH_set_ex_data(DH *d, int idx, void *arg) { return CRYPTO_set_ex_data(&d->ex_data, idx, arg); } void *DH_get_ex_data(DH *d, int idx) { return CRYPTO_get_ex_data(&d->ex_data, idx); }