/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include "../internal.h" // kMinNumBuckets is the minimum size of the buckets array in an |_LHASH|. static const size_t kMinNumBuckets = 16; // kMaxAverageChainLength contains the maximum, average chain length. When the // average chain length exceeds this value, the hash table will be resized. static const size_t kMaxAverageChainLength = 2; static const size_t kMinAverageChainLength = 1; struct lhash_st { // num_items contains the total number of items in the hash table. size_t num_items; // buckets is an array of |num_buckets| pointers. Each points to the head of // a chain of LHASH_ITEM objects that have the same hash value, mod // |num_buckets|. LHASH_ITEM **buckets; // num_buckets contains the length of |buckets|. This value is always >= // kMinNumBuckets. size_t num_buckets; // callback_depth contains the current depth of |lh_doall| or |lh_doall_arg| // calls. If non-zero then this suppresses resizing of the |buckets| array, // which would otherwise disrupt the iteration. unsigned callback_depth; lhash_cmp_func comp; lhash_hash_func hash; }; _LHASH *lh_new(lhash_hash_func hash, lhash_cmp_func comp) { _LHASH *ret = OPENSSL_malloc(sizeof(_LHASH)); if (ret == NULL) { return NULL; } OPENSSL_memset(ret, 0, sizeof(_LHASH)); ret->num_buckets = kMinNumBuckets; ret->buckets = OPENSSL_malloc(sizeof(LHASH_ITEM *) * ret->num_buckets); if (ret->buckets == NULL) { OPENSSL_free(ret); return NULL; } OPENSSL_memset(ret->buckets, 0, sizeof(LHASH_ITEM *) * ret->num_buckets); ret->comp = comp; ret->hash = hash; return ret; } void lh_free(_LHASH *lh) { if (lh == NULL) { return; } for (size_t i = 0; i < lh->num_buckets; i++) { LHASH_ITEM *next; for (LHASH_ITEM *n = lh->buckets[i]; n != NULL; n = next) { next = n->next; OPENSSL_free(n); } } OPENSSL_free(lh->buckets); OPENSSL_free(lh); } size_t lh_num_items(const _LHASH *lh) { return lh->num_items; } // get_next_ptr_and_hash returns a pointer to the pointer that points to the // item equal to |data|. In other words, it searches for an item equal to |data| // and, if it's at the start of a chain, then it returns a pointer to an // element of |lh->buckets|, otherwise it returns a pointer to the |next| // element of the previous item in the chain. If an element equal to |data| is // not found, it returns a pointer that points to a NULL pointer. If |out_hash| // is not NULL, then it also puts the hash value of |data| in |*out_hash|. static LHASH_ITEM **get_next_ptr_and_hash(const _LHASH *lh, uint32_t *out_hash, const void *data) { const uint32_t hash = lh->hash(data); LHASH_ITEM *cur, **ret; if (out_hash != NULL) { *out_hash = hash; } ret = &lh->buckets[hash % lh->num_buckets]; for (cur = *ret; cur != NULL; cur = *ret) { if (lh->comp(cur->data, data) == 0) { break; } ret = &cur->next; } return ret; } void *lh_retrieve(const _LHASH *lh, const void *data) { LHASH_ITEM **next_ptr; next_ptr = get_next_ptr_and_hash(lh, NULL, data); if (*next_ptr == NULL) { return NULL; } return (*next_ptr)->data; } // lh_rebucket allocates a new array of |new_num_buckets| pointers and // redistributes the existing items into it before making it |lh->buckets| and // freeing the old array. static void lh_rebucket(_LHASH *lh, const size_t new_num_buckets) { LHASH_ITEM **new_buckets, *cur, *next; size_t i, alloc_size; alloc_size = sizeof(LHASH_ITEM *) * new_num_buckets; if (alloc_size / sizeof(LHASH_ITEM*) != new_num_buckets) { return; } new_buckets = OPENSSL_malloc(alloc_size); if (new_buckets == NULL) { return; } OPENSSL_memset(new_buckets, 0, alloc_size); for (i = 0; i < lh->num_buckets; i++) { for (cur = lh->buckets[i]; cur != NULL; cur = next) { const size_t new_bucket = cur->hash % new_num_buckets; next = cur->next; cur->next = new_buckets[new_bucket]; new_buckets[new_bucket] = cur; } } OPENSSL_free(lh->buckets); lh->num_buckets = new_num_buckets; lh->buckets = new_buckets; } // lh_maybe_resize resizes the |buckets| array if needed. static void lh_maybe_resize(_LHASH *lh) { size_t avg_chain_length; if (lh->callback_depth > 0) { // Don't resize the hash if we are currently iterating over it. return; } assert(lh->num_buckets >= kMinNumBuckets); avg_chain_length = lh->num_items / lh->num_buckets; if (avg_chain_length > kMaxAverageChainLength) { const size_t new_num_buckets = lh->num_buckets * 2; if (new_num_buckets > lh->num_buckets) { lh_rebucket(lh, new_num_buckets); } } else if (avg_chain_length < kMinAverageChainLength && lh->num_buckets > kMinNumBuckets) { size_t new_num_buckets = lh->num_buckets / 2; if (new_num_buckets < kMinNumBuckets) { new_num_buckets = kMinNumBuckets; } lh_rebucket(lh, new_num_buckets); } } int lh_insert(_LHASH *lh, void **old_data, void *data) { uint32_t hash; LHASH_ITEM **next_ptr, *item; *old_data = NULL; next_ptr = get_next_ptr_and_hash(lh, &hash, data); if (*next_ptr != NULL) { // An element equal to |data| already exists in the hash table. It will be // replaced. *old_data = (*next_ptr)->data; (*next_ptr)->data = data; return 1; } // An element equal to |data| doesn't exist in the hash table yet. item = OPENSSL_malloc(sizeof(LHASH_ITEM)); if (item == NULL) { return 0; } item->data = data; item->hash = hash; item->next = NULL; *next_ptr = item; lh->num_items++; lh_maybe_resize(lh); return 1; } void *lh_delete(_LHASH *lh, const void *data) { LHASH_ITEM **next_ptr, *item, *ret; next_ptr = get_next_ptr_and_hash(lh, NULL, data); if (*next_ptr == NULL) { // No such element. return NULL; } item = *next_ptr; *next_ptr = item->next; ret = item->data; OPENSSL_free(item); lh->num_items--; lh_maybe_resize(lh); return ret; } static void lh_doall_internal(_LHASH *lh, void (*no_arg_func)(void *), void (*arg_func)(void *, void *), void *arg) { if (lh == NULL) { return; } if (lh->callback_depth < UINT_MAX) { // |callback_depth| is a saturating counter. lh->callback_depth++; } for (size_t i = 0; i < lh->num_buckets; i++) { LHASH_ITEM *next; for (LHASH_ITEM *cur = lh->buckets[i]; cur != NULL; cur = next) { next = cur->next; if (arg_func) { arg_func(cur->data, arg); } else { no_arg_func(cur->data); } } } if (lh->callback_depth < UINT_MAX) { lh->callback_depth--; } // The callback may have added or removed elements and the non-zero value of // |callback_depth| will have suppressed any resizing. Thus any needed // resizing is done here. lh_maybe_resize(lh); } void lh_doall(_LHASH *lh, void (*func)(void *)) { lh_doall_internal(lh, func, NULL, NULL); } void lh_doall_arg(_LHASH *lh, void (*func)(void *, void *), void *arg) { lh_doall_internal(lh, NULL, func, arg); } uint32_t lh_strhash(const char *c) { if (c == NULL) { return 0; } return OPENSSL_hash32(c, strlen(c)); }