/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef OPENSSL_HEADER_RSA_H #define OPENSSL_HEADER_RSA_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif // rsa.h contains functions for handling encryption and signature using RSA. // Allocation and destruction. // RSA_new returns a new, empty RSA object or NULL on error. OPENSSL_EXPORT RSA *RSA_new(void); // RSA_new_method acts the same as |RSA_new| but takes an explicit |ENGINE|. OPENSSL_EXPORT RSA *RSA_new_method(const ENGINE *engine); // RSA_free decrements the reference count of |rsa| and frees it if the // reference count drops to zero. OPENSSL_EXPORT void RSA_free(RSA *rsa); // RSA_up_ref increments the reference count of |rsa| and returns one. OPENSSL_EXPORT int RSA_up_ref(RSA *rsa); // Properties. // RSA_bits returns the size of |rsa|, in bits. OPENSSL_EXPORT unsigned RSA_bits(const RSA *rsa); // RSA_get0_key sets |*out_n|, |*out_e|, and |*out_d|, if non-NULL, to |rsa|'s // modulus, public exponent, and private exponent, respectively. If |rsa| is a // public key, the private exponent will be set to NULL. OPENSSL_EXPORT void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e, const BIGNUM **out_d); // RSA_get0_factors sets |*out_p| and |*out_q|, if non-NULL, to |rsa|'s prime // factors. If |rsa| is a public key, they will be set to NULL. OPENSSL_EXPORT void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p, const BIGNUM **out_q); // RSA_get0_crt_params sets |*out_dmp1|, |*out_dmq1|, and |*out_iqmp|, if // non-NULL, to |rsa|'s CRT parameters. These are d (mod p-1), d (mod q-1) and // q^-1 (mod p), respectively. If |rsa| is a public key, each parameter will be // set to NULL. OPENSSL_EXPORT void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1, const BIGNUM **out_dmq1, const BIGNUM **out_iqmp); // RSA_set0_key sets |rsa|'s modulus, public exponent, and private exponent to // |n|, |e|, and |d| respectively, if non-NULL. On success, it takes ownership // of each argument and returns one. Otherwise, it returns zero. // // |d| may be NULL, but |n| and |e| must either be non-NULL or already // configured on |rsa|. OPENSSL_EXPORT int RSA_set0_key(RSA *rsa, BIGNUM *n, BIGNUM *e, BIGNUM *d); // RSA_set0_factors sets |rsa|'s prime factors to |p| and |q|, if non-NULL, and // takes ownership of them. On success, it takes ownership of each argument and // returns one. Otherwise, it returns zero. // // Each argument must either be non-NULL or already configured on |rsa|. OPENSSL_EXPORT int RSA_set0_factors(RSA *rsa, BIGNUM *p, BIGNUM *q); // RSA_set0_crt_params sets |rsa|'s CRT parameters to |dmp1|, |dmq1|, and // |iqmp|, if non-NULL, and takes ownership of them. On success, it takes // ownership of its parameters and returns one. Otherwise, it returns zero. // // Each argument must either be non-NULL or already configured on |rsa|. OPENSSL_EXPORT int RSA_set0_crt_params(RSA *rsa, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp); // Key generation. // RSA_generate_key_ex generates a new RSA key where the modulus has size // |bits| and the public exponent is |e|. If unsure, |RSA_F4| is a good value // for |e|. If |cb| is not NULL then it is called during the key generation // process. In addition to the calls documented for |BN_generate_prime_ex|, it // is called with event=2 when the n'th prime is rejected as unsuitable and // with event=3 when a suitable value for |p| is found. // // It returns one on success or zero on error. OPENSSL_EXPORT int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb); // RSA_generate_key_fips behaves like |RSA_generate_key_ex| but performs // additional checks for FIPS compliance. The public exponent is always 65537 // and |bits| must be either 2048 or 3072. OPENSSL_EXPORT int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb); // Encryption / Decryption // Padding types for encryption. #define RSA_PKCS1_PADDING 1 #define RSA_NO_PADDING 3 #define RSA_PKCS1_OAEP_PADDING 4 // RSA_PKCS1_PSS_PADDING can only be used via the EVP interface. #define RSA_PKCS1_PSS_PADDING 6 // RSA_encrypt encrypts |in_len| bytes from |in| to the public key from |rsa| // and writes, at most, |max_out| bytes of encrypted data to |out|. The // |max_out| argument must be, at least, |RSA_size| in order to ensure success. // // It returns 1 on success or zero on error. // // The |padding| argument must be one of the |RSA_*_PADDING| values. If in // doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols but // |RSA_PKCS1_PADDING| is most common. OPENSSL_EXPORT int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding); // RSA_decrypt decrypts |in_len| bytes from |in| with the private key from // |rsa| and writes, at most, |max_out| bytes of plaintext to |out|. The // |max_out| argument must be, at least, |RSA_size| in order to ensure success. // // It returns 1 on success or zero on error. // // The |padding| argument must be one of the |RSA_*_PADDING| values. If in // doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols. // // Passing |RSA_PKCS1_PADDING| into this function is deprecated and insecure. If // implementing a protocol using RSAES-PKCS1-V1_5, use |RSA_NO_PADDING| and then // check padding in constant-time combined with a swap to a random session key // or other mitigation. See "Chosen Ciphertext Attacks Against Protocols Based // on the RSA Encryption Standard PKCS #1", Daniel Bleichenbacher, Advances in // Cryptology (Crypto '98). OPENSSL_EXPORT int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding); // RSA_public_encrypt encrypts |flen| bytes from |from| to the public key in // |rsa| and writes the encrypted data to |to|. The |to| buffer must have at // least |RSA_size| bytes of space. It returns the number of bytes written, or // -1 on error. The |padding| argument must be one of the |RSA_*_PADDING| // values. If in doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols but // |RSA_PKCS1_PADDING| is most common. // // WARNING: this function is dangerous because it breaks the usual return value // convention. Use |RSA_encrypt| instead. OPENSSL_EXPORT int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, int padding); // RSA_private_decrypt decrypts |flen| bytes from |from| with the public key in // |rsa| and writes the plaintext to |to|. The |to| buffer must have at least // |RSA_size| bytes of space. It returns the number of bytes written, or -1 on // error. The |padding| argument must be one of the |RSA_*_PADDING| values. If // in doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols. Passing // |RSA_PKCS1_PADDING| into this function is deprecated and insecure. See // |RSA_decrypt|. // // WARNING: this function is dangerous because it breaks the usual return value // convention. Use |RSA_decrypt| instead. OPENSSL_EXPORT int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, int padding); // Signing / Verification // RSA_sign signs |in_len| bytes of digest from |in| with |rsa| using // RSASSA-PKCS1-v1_5. It writes, at most, |RSA_size(rsa)| bytes to |out|. On // successful return, the actual number of bytes written is written to // |*out_len|. // // The |hash_nid| argument identifies the hash function used to calculate |in| // and is embedded in the resulting signature. For example, it might be // |NID_sha256|. // // It returns 1 on success and zero on error. OPENSSL_EXPORT int RSA_sign(int hash_nid, const uint8_t *in, unsigned int in_len, uint8_t *out, unsigned int *out_len, RSA *rsa); // RSA_sign_pss_mgf1 signs |in_len| bytes from |in| with the public key from // |rsa| using RSASSA-PSS with MGF1 as the mask generation function. It writes, // at most, |max_out| bytes of signature data to |out|. The |max_out| argument // must be, at least, |RSA_size| in order to ensure success. It returns 1 on // success or zero on error. // // The |md| and |mgf1_md| arguments identify the hash used to calculate |msg| // and the MGF1 hash, respectively. If |mgf1_md| is NULL, |md| is // used. // // |salt_len| specifies the expected salt length in bytes. If |salt_len| is -1, // then the salt length is the same as the hash length. If -2, then the salt // length is maximal given the size of |rsa|. If unsure, use -1. OPENSSL_EXPORT int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len); // RSA_sign_raw signs |in_len| bytes from |in| with the public key from |rsa| // and writes, at most, |max_out| bytes of signature data to |out|. The // |max_out| argument must be, at least, |RSA_size| in order to ensure success. // // It returns 1 on success or zero on error. // // The |padding| argument must be one of the |RSA_*_PADDING| values. If in // doubt, |RSA_PKCS1_PADDING| is the most common but |RSA_PKCS1_PSS_PADDING| // (via the |EVP_PKEY| interface) is preferred for new protocols. OPENSSL_EXPORT int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding); // RSA_verify verifies that |sig_len| bytes from |sig| are a valid, // RSASSA-PKCS1-v1_5 signature of |msg_len| bytes at |msg| by |rsa|. // // The |hash_nid| argument identifies the hash function used to calculate |msg| // and is embedded in the resulting signature in order to prevent hash // confusion attacks. For example, it might be |NID_sha256|. // // It returns one if the signature is valid and zero otherwise. // // WARNING: this differs from the original, OpenSSL function which additionally // returned -1 on error. OPENSSL_EXPORT int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len, const uint8_t *sig, size_t sig_len, RSA *rsa); // RSA_verify_pss_mgf1 verifies that |sig_len| bytes from |sig| are a valid, // RSASSA-PSS signature of |msg_len| bytes at |msg| by |rsa|. It returns one if // the signature is valid and zero otherwise. MGF1 is used as the mask // generation function. // // The |md| and |mgf1_md| arguments identify the hash used to calculate |msg| // and the MGF1 hash, respectively. If |mgf1_md| is NULL, |md| is // used. |salt_len| specifies the expected salt length in bytes. // // If |salt_len| is -1, then the salt length is the same as the hash length. If // -2, then the salt length is recovered and all values accepted. If unsure, use // -1. OPENSSL_EXPORT int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *msg, size_t msg_len, const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len, const uint8_t *sig, size_t sig_len); // RSA_verify_raw verifies |in_len| bytes of signature from |in| using the // public key from |rsa| and writes, at most, |max_out| bytes of plaintext to // |out|. The |max_out| argument must be, at least, |RSA_size| in order to // ensure success. // // It returns 1 on success or zero on error. // // The |padding| argument must be one of the |RSA_*_PADDING| values. If in // doubt, |RSA_PKCS1_PADDING| is the most common but |RSA_PKCS1_PSS_PADDING| // (via the |EVP_PKEY| interface) is preferred for new protocols. OPENSSL_EXPORT int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding); // RSA_private_encrypt encrypts |flen| bytes from |from| with the private key in // |rsa| and writes the encrypted data to |to|. The |to| buffer must have at // least |RSA_size| bytes of space. It returns the number of bytes written, or // -1 on error. The |padding| argument must be one of the |RSA_*_PADDING| // values. If in doubt, |RSA_PKCS1_PADDING| is the most common but // |RSA_PKCS1_PSS_PADDING| (via the |EVP_PKEY| interface) is preferred for new // protocols. // // WARNING: this function is dangerous because it breaks the usual return value // convention. Use |RSA_sign_raw| instead. OPENSSL_EXPORT int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, int padding); // RSA_public_decrypt verifies |flen| bytes of signature from |from| using the // public key in |rsa| and writes the plaintext to |to|. The |to| buffer must // have at least |RSA_size| bytes of space. It returns the number of bytes // written, or -1 on error. The |padding| argument must be one of the // |RSA_*_PADDING| values. If in doubt, |RSA_PKCS1_PADDING| is the most common // but |RSA_PKCS1_PSS_PADDING| (via the |EVP_PKEY| interface) is preferred for // new protocols. // // WARNING: this function is dangerous because it breaks the usual return value // convention. Use |RSA_verify_raw| instead. OPENSSL_EXPORT int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, int padding); // Utility functions. // RSA_size returns the number of bytes in the modulus, which is also the size // of a signature or encrypted value using |rsa|. OPENSSL_EXPORT unsigned RSA_size(const RSA *rsa); // RSA_is_opaque returns one if |rsa| is opaque and doesn't expose its key // material. Otherwise it returns zero. OPENSSL_EXPORT int RSA_is_opaque(const RSA *rsa); // RSAPublicKey_dup allocates a fresh |RSA| and copies the public key from // |rsa| into it. It returns the fresh |RSA| object, or NULL on error. OPENSSL_EXPORT RSA *RSAPublicKey_dup(const RSA *rsa); // RSAPrivateKey_dup allocates a fresh |RSA| and copies the private key from // |rsa| into it. It returns the fresh |RSA| object, or NULL on error. OPENSSL_EXPORT RSA *RSAPrivateKey_dup(const RSA *rsa); // RSA_check_key performs basic validity tests on |rsa|. It returns one if // they pass and zero otherwise. Opaque keys and public keys always pass. If it // returns zero then a more detailed error is available on the error queue. OPENSSL_EXPORT int RSA_check_key(const RSA *rsa); // RSA_check_fips performs public key validity tests on |key|. It returns one // if they pass and zero otherwise. Opaque keys always fail. OPENSSL_EXPORT int RSA_check_fips(RSA *key); // RSA_verify_PKCS1_PSS_mgf1 verifies that |EM| is a correct PSS padding of // |mHash|, where |mHash| is a digest produced by |Hash|. |EM| must point to // exactly |RSA_size(rsa)| bytes of data. The |mgf1Hash| argument specifies the // hash function for generating the mask. If NULL, |Hash| is used. The |sLen| // argument specifies the expected salt length in bytes. If |sLen| is -1 then // the salt length is the same as the hash length. If -2, then the salt length // is recovered and all values accepted. // // If unsure, use -1. // // It returns one on success or zero on error. // // This function implements only the low-level padding logic. Use // |RSA_verify_pss_mgf1| instead. OPENSSL_EXPORT int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const uint8_t *mHash, const EVP_MD *Hash, const EVP_MD *mgf1Hash, const uint8_t *EM, int sLen); // RSA_padding_add_PKCS1_PSS_mgf1 writes a PSS padding of |mHash| to |EM|, // where |mHash| is a digest produced by |Hash|. |RSA_size(rsa)| bytes of // output will be written to |EM|. The |mgf1Hash| argument specifies the hash // function for generating the mask. If NULL, |Hash| is used. The |sLen| // argument specifies the expected salt length in bytes. If |sLen| is -1 then // the salt length is the same as the hash length. If -2, then the salt length // is maximal given the space in |EM|. // // It returns one on success or zero on error. // // This function implements only the low-level padding logic. Use // |RSA_sign_pss_mgf1| instead. OPENSSL_EXPORT int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, uint8_t *EM, const uint8_t *mHash, const EVP_MD *Hash, const EVP_MD *mgf1Hash, int sLen); // RSA_padding_add_PKCS1_OAEP_mgf1 writes an OAEP padding of |from| to |to| // with the given parameters and hash functions. If |md| is NULL then SHA-1 is // used. If |mgf1md| is NULL then the value of |md| is used (which means SHA-1 // if that, in turn, is NULL). // // It returns one on success or zero on error. OPENSSL_EXPORT int RSA_padding_add_PKCS1_OAEP_mgf1( uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len, const uint8_t *param, size_t param_len, const EVP_MD *md, const EVP_MD *mgf1md); // RSA_add_pkcs1_prefix builds a version of |msg| prefixed with the DigestInfo // header for the given hash function and sets |out_msg| to point to it. On // successful return, if |*is_alloced| is one, the caller must release // |*out_msg| with |OPENSSL_free|. OPENSSL_EXPORT int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len, int *is_alloced, int hash_nid, const uint8_t *msg, size_t msg_len); // ASN.1 functions. // RSA_parse_public_key parses a DER-encoded RSAPublicKey structure (RFC 3447) // from |cbs| and advances |cbs|. It returns a newly-allocated |RSA| or NULL on // error. OPENSSL_EXPORT RSA *RSA_parse_public_key(CBS *cbs); // RSA_public_key_from_bytes parses |in| as a DER-encoded RSAPublicKey structure // (RFC 3447). It returns a newly-allocated |RSA| or NULL on error. OPENSSL_EXPORT RSA *RSA_public_key_from_bytes(const uint8_t *in, size_t in_len); // RSA_marshal_public_key marshals |rsa| as a DER-encoded RSAPublicKey structure // (RFC 3447) and appends the result to |cbb|. It returns one on success and // zero on failure. OPENSSL_EXPORT int RSA_marshal_public_key(CBB *cbb, const RSA *rsa); // RSA_public_key_to_bytes marshals |rsa| as a DER-encoded RSAPublicKey // structure (RFC 3447) and, on success, sets |*out_bytes| to a newly allocated // buffer containing the result and returns one. Otherwise, it returns zero. The // result should be freed with |OPENSSL_free|. OPENSSL_EXPORT int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len, const RSA *rsa); // RSA_parse_private_key parses a DER-encoded RSAPrivateKey structure (RFC 3447) // from |cbs| and advances |cbs|. It returns a newly-allocated |RSA| or NULL on // error. OPENSSL_EXPORT RSA *RSA_parse_private_key(CBS *cbs); // RSA_private_key_from_bytes parses |in| as a DER-encoded RSAPrivateKey // structure (RFC 3447). It returns a newly-allocated |RSA| or NULL on error. OPENSSL_EXPORT RSA *RSA_private_key_from_bytes(const uint8_t *in, size_t in_len); // RSA_marshal_private_key marshals |rsa| as a DER-encoded RSAPrivateKey // structure (RFC 3447) and appends the result to |cbb|. It returns one on // success and zero on failure. OPENSSL_EXPORT int RSA_marshal_private_key(CBB *cbb, const RSA *rsa); // RSA_private_key_to_bytes marshals |rsa| as a DER-encoded RSAPrivateKey // structure (RFC 3447) and, on success, sets |*out_bytes| to a newly allocated // buffer containing the result and returns one. Otherwise, it returns zero. The // result should be freed with |OPENSSL_free|. OPENSSL_EXPORT int RSA_private_key_to_bytes(uint8_t **out_bytes, size_t *out_len, const RSA *rsa); // ex_data functions. // // See |ex_data.h| for details. OPENSSL_EXPORT int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func); OPENSSL_EXPORT int RSA_set_ex_data(RSA *rsa, int idx, void *arg); OPENSSL_EXPORT void *RSA_get_ex_data(const RSA *rsa, int idx); // Flags. // RSA_FLAG_OPAQUE specifies that this RSA_METHOD does not expose its key // material. This may be set if, for instance, it is wrapping some other crypto // API, like a platform key store. #define RSA_FLAG_OPAQUE 1 // RSA_FLAG_NO_BLINDING disables blinding of private operations, which is a // dangerous thing to do. It is deprecated and should not be used. It will // be ignored whenever possible. // // This flag must be used if a key without the public exponent |e| is used for // private key operations; avoid using such keys whenever possible. #define RSA_FLAG_NO_BLINDING 8 // RSA_FLAG_EXT_PKEY is deprecated and ignored. #define RSA_FLAG_EXT_PKEY 0x20 // RSA public exponent values. #define RSA_3 0x3 #define RSA_F4 0x10001 // Deprecated functions. #define RSA_METHOD_FLAG_NO_CHECK RSA_FLAG_OPAQUE // RSA_flags returns the flags for |rsa|. These are a bitwise OR of |RSA_FLAG_*| // constants. OPENSSL_EXPORT int RSA_flags(const RSA *rsa); // RSA_blinding_on returns one. OPENSSL_EXPORT int RSA_blinding_on(RSA *rsa, BN_CTX *ctx); // RSA_generate_key behaves like |RSA_generate_key_ex|, which is what you // should use instead. It returns NULL on error, or a newly-allocated |RSA| on // success. This function is provided for compatibility only. The |callback| // and |cb_arg| parameters must be NULL. OPENSSL_EXPORT RSA *RSA_generate_key(int bits, unsigned long e, void *callback, void *cb_arg); // d2i_RSAPublicKey parses an ASN.1, DER-encoded, RSA public key from |len| // bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result // is in |*out|. Note that, even if |*out| is already non-NULL on entry, it // will not be written to. Rather, a fresh |RSA| is allocated and the previous // one is freed. On successful exit, |*inp| is advanced past the DER structure. // It returns the result or NULL on error. OPENSSL_EXPORT RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len); // i2d_RSAPublicKey marshals |in| to an ASN.1, DER structure. If |outp| is not // NULL then the result is written to |*outp| and |*outp| is advanced just past // the output. It returns the number of bytes in the result, whether written or // not, or a negative value on error. OPENSSL_EXPORT int i2d_RSAPublicKey(const RSA *in, uint8_t **outp); // d2i_RSAPrivateKey parses an ASN.1, DER-encoded, RSA private key from |len| // bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result // is in |*out|. Note that, even if |*out| is already non-NULL on entry, it // will not be written to. Rather, a fresh |RSA| is allocated and the previous // one is freed. On successful exit, |*inp| is advanced past the DER structure. // It returns the result or NULL on error. OPENSSL_EXPORT RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len); // i2d_RSAPrivateKey marshals |in| to an ASN.1, DER structure. If |outp| is not // NULL then the result is written to |*outp| and |*outp| is advanced just past // the output. It returns the number of bytes in the result, whether written or // not, or a negative value on error. OPENSSL_EXPORT int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp); // RSA_padding_add_PKCS1_PSS acts like |RSA_padding_add_PKCS1_PSS_mgf1| but the // |mgf1Hash| parameter of the latter is implicitly set to |Hash|. // // This function implements only the low-level padding logic. Use // |RSA_sign_pss_mgf1| instead. OPENSSL_EXPORT int RSA_padding_add_PKCS1_PSS(RSA *rsa, uint8_t *EM, const uint8_t *mHash, const EVP_MD *Hash, int sLen); // RSA_verify_PKCS1_PSS acts like |RSA_verify_PKCS1_PSS_mgf1| but the // |mgf1Hash| parameter of the latter is implicitly set to |Hash|. // // This function implements only the low-level padding logic. Use // |RSA_verify_pss_mgf1| instead. OPENSSL_EXPORT int RSA_verify_PKCS1_PSS(RSA *rsa, const uint8_t *mHash, const EVP_MD *Hash, const uint8_t *EM, int sLen); // RSA_padding_add_PKCS1_OAEP acts like |RSA_padding_add_PKCS1_OAEP_mgf1| but // the |md| and |mgf1md| parameters of the latter are implicitly set to NULL, // which means SHA-1. OPENSSL_EXPORT int RSA_padding_add_PKCS1_OAEP(uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len, const uint8_t *param, size_t param_len); struct rsa_meth_st { struct openssl_method_common_st common; void *app_data; int (*init)(RSA *rsa); int (*finish)(RSA *rsa); // size returns the size of the RSA modulus in bytes. size_t (*size)(const RSA *rsa); int (*sign)(int type, const uint8_t *m, unsigned int m_length, uint8_t *sigret, unsigned int *siglen, const RSA *rsa); // These functions mirror the |RSA_*| functions of the same name. int (*sign_raw)(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding); int (*decrypt)(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, const uint8_t *in, size_t in_len, int padding); // private_transform takes a big-endian integer from |in|, calculates the // d'th power of it, modulo the RSA modulus and writes the result as a // big-endian integer to |out|. Both |in| and |out| are |len| bytes long and // |len| is always equal to |RSA_size(rsa)|. If the result of the transform // can be represented in fewer than |len| bytes, then |out| must be zero // padded on the left. // // It returns one on success and zero otherwise. // // RSA decrypt and sign operations will call this, thus an ENGINE might wish // to override it in order to avoid having to implement the padding // functionality demanded by those, higher level, operations. int (*private_transform)(RSA *rsa, uint8_t *out, const uint8_t *in, size_t len); int flags; }; // Private functions. typedef struct bn_blinding_st BN_BLINDING; struct rsa_st { RSA_METHOD *meth; BIGNUM *n; BIGNUM *e; BIGNUM *d; BIGNUM *p; BIGNUM *q; BIGNUM *dmp1; BIGNUM *dmq1; BIGNUM *iqmp; // be careful using this if the RSA structure is shared CRYPTO_EX_DATA ex_data; CRYPTO_refcount_t references; int flags; CRYPTO_MUTEX lock; // Used to cache montgomery values. The creation of these values is protected // by |lock|. BN_MONT_CTX *mont_n; BN_MONT_CTX *mont_p; BN_MONT_CTX *mont_q; // num_blindings contains the size of the |blindings| and |blindings_inuse| // arrays. This member and the |blindings_inuse| array are protected by // |lock|. unsigned num_blindings; // blindings is an array of BN_BLINDING structures that can be reserved by a // thread by locking |lock| and changing the corresponding element in // |blindings_inuse| from 0 to 1. BN_BLINDING **blindings; unsigned char *blindings_inuse; }; #if defined(__cplusplus) } // extern C extern "C++" { namespace bssl { BORINGSSL_MAKE_DELETER(RSA, RSA_free) } // namespace bssl } // extern C++ #endif #define RSA_R_BAD_ENCODING 100 #define RSA_R_BAD_E_VALUE 101 #define RSA_R_BAD_FIXED_HEADER_DECRYPT 102 #define RSA_R_BAD_PAD_BYTE_COUNT 103 #define RSA_R_BAD_RSA_PARAMETERS 104 #define RSA_R_BAD_SIGNATURE 105 #define RSA_R_BAD_VERSION 106 #define RSA_R_BLOCK_TYPE_IS_NOT_01 107 #define RSA_R_BN_NOT_INITIALIZED 108 #define RSA_R_CANNOT_RECOVER_MULTI_PRIME_KEY 109 #define RSA_R_CRT_PARAMS_ALREADY_GIVEN 110 #define RSA_R_CRT_VALUES_INCORRECT 111 #define RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN 112 #define RSA_R_DATA_TOO_LARGE 113 #define RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE 114 #define RSA_R_DATA_TOO_LARGE_FOR_MODULUS 115 #define RSA_R_DATA_TOO_SMALL 116 #define RSA_R_DATA_TOO_SMALL_FOR_KEY_SIZE 117 #define RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY 118 #define RSA_R_D_E_NOT_CONGRUENT_TO_1 119 #define RSA_R_EMPTY_PUBLIC_KEY 120 #define RSA_R_ENCODE_ERROR 121 #define RSA_R_FIRST_OCTET_INVALID 122 #define RSA_R_INCONSISTENT_SET_OF_CRT_VALUES 123 #define RSA_R_INTERNAL_ERROR 124 #define RSA_R_INVALID_MESSAGE_LENGTH 125 #define RSA_R_KEY_SIZE_TOO_SMALL 126 #define RSA_R_LAST_OCTET_INVALID 127 #define RSA_R_MODULUS_TOO_LARGE 128 #define RSA_R_MUST_HAVE_AT_LEAST_TWO_PRIMES 129 #define RSA_R_NO_PUBLIC_EXPONENT 130 #define RSA_R_NULL_BEFORE_BLOCK_MISSING 131 #define RSA_R_N_NOT_EQUAL_P_Q 132 #define RSA_R_OAEP_DECODING_ERROR 133 #define RSA_R_ONLY_ONE_OF_P_Q_GIVEN 134 #define RSA_R_OUTPUT_BUFFER_TOO_SMALL 135 #define RSA_R_PADDING_CHECK_FAILED 136 #define RSA_R_PKCS_DECODING_ERROR 137 #define RSA_R_SLEN_CHECK_FAILED 138 #define RSA_R_SLEN_RECOVERY_FAILED 139 #define RSA_R_TOO_LONG 140 #define RSA_R_TOO_MANY_ITERATIONS 141 #define RSA_R_UNKNOWN_ALGORITHM_TYPE 142 #define RSA_R_UNKNOWN_PADDING_TYPE 143 #define RSA_R_VALUE_MISSING 144 #define RSA_R_WRONG_SIGNATURE_LENGTH 145 #define RSA_R_PUBLIC_KEY_VALIDATION_FAILED 146 #endif // OPENSSL_HEADER_RSA_H