/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../test/file_test.h" #include "../../test/test_util.h" #include "../bn/internal.h" #include "internal.h" // kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field // omitted. static const uint8_t kECKeyWithoutPublic[] = { 0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, }; // kECKeySpecifiedCurve is the above key with P-256's parameters explicitly // spelled out rather than using a named curve. static const uint8_t kECKeySpecifiedCurve[] = { 0x30, 0x82, 0x01, 0x22, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x81, 0xfa, 0x30, 0x81, 0xf7, 0x02, 0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, 0x01, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x30, 0x5b, 0x04, 0x20, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x04, 0x20, 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, 0x03, 0x15, 0x00, 0xc4, 0x9d, 0x36, 0x08, 0x86, 0xe7, 0x04, 0x93, 0x6a, 0x66, 0x78, 0xe1, 0x13, 0x9d, 0x26, 0xb7, 0x81, 0x9f, 0x7e, 0x90, 0x04, 0x41, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, 0x02, 0x01, 0x01, }; // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where // the private key is one. The private key is incorrectly encoded without zero // padding. static const uint8_t kECKeyMissingZeros[] = { 0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, }; // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where // the private key is one. The private key is encoded with the required zero // padding. static const uint8_t kECKeyWithZeros[] = { 0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, }; // DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the // result or nullptr on error. static bssl::UniquePtr DecodeECPrivateKey(const uint8_t *in, size_t in_len) { CBS cbs; CBS_init(&cbs, in, in_len); bssl::UniquePtr ret(EC_KEY_parse_private_key(&cbs, NULL)); if (!ret || CBS_len(&cbs) != 0) { return nullptr; } return ret; } // EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It // returns true on success or false on error. static bool EncodeECPrivateKey(std::vector *out, const EC_KEY *key) { bssl::ScopedCBB cbb; uint8_t *der; size_t der_len; if (!CBB_init(cbb.get(), 0) || !EC_KEY_marshal_private_key(cbb.get(), key, EC_KEY_get_enc_flags(key)) || !CBB_finish(cbb.get(), &der, &der_len)) { return false; } out->assign(der, der + der_len); OPENSSL_free(der); return true; } TEST(ECTest, Encoding) { bssl::UniquePtr key = DecodeECPrivateKey(kECKeyWithoutPublic, sizeof(kECKeyWithoutPublic)); ASSERT_TRUE(key); // Test that the encoding round-trips. std::vector out; ASSERT_TRUE(EncodeECPrivateKey(&out, key.get())); EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size())); const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get()); ASSERT_TRUE(pub_key) << "Public key missing"; bssl::UniquePtr x(BN_new()); bssl::UniquePtr y(BN_new()); ASSERT_TRUE(x); ASSERT_TRUE(y); ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( EC_KEY_get0_group(key.get()), pub_key, x.get(), y.get(), NULL)); bssl::UniquePtr x_hex(BN_bn2hex(x.get())); bssl::UniquePtr y_hex(BN_bn2hex(y.get())); ASSERT_TRUE(x_hex); ASSERT_TRUE(y_hex); EXPECT_STREQ( "c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681", x_hex.get()); EXPECT_STREQ( "e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88", y_hex.get()); } TEST(ECTest, ZeroPadding) { // Check that the correct encoding round-trips. bssl::UniquePtr key = DecodeECPrivateKey(kECKeyWithZeros, sizeof(kECKeyWithZeros)); ASSERT_TRUE(key); std::vector out; EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size())); // Keys without leading zeros also parse, but they encode correctly. key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros)); ASSERT_TRUE(key); EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size())); } TEST(ECTest, SpecifiedCurve) { // Test keys with specified curves may be decoded. bssl::UniquePtr key = DecodeECPrivateKey(kECKeySpecifiedCurve, sizeof(kECKeySpecifiedCurve)); ASSERT_TRUE(key); // The group should have been interpreted as P-256. EXPECT_EQ(NID_X9_62_prime256v1, EC_GROUP_get_curve_name(EC_KEY_get0_group(key.get()))); // Encoding the key should still use named form. std::vector out; EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size())); } TEST(ECTest, ArbitraryCurve) { // Make a P-256 key and extract the affine coordinates. bssl::UniquePtr key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); ASSERT_TRUE(key); ASSERT_TRUE(EC_KEY_generate_key(key.get())); // Make an arbitrary curve which is identical to P-256. static const uint8_t kP[] = { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; static const uint8_t kA[] = { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, }; static const uint8_t kB[] = { 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, }; static const uint8_t kX[] = { 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, }; static const uint8_t kY[] = { 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, }; static const uint8_t kOrder[] = { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, }; bssl::UniquePtr ctx(BN_CTX_new()); ASSERT_TRUE(ctx); bssl::UniquePtr p(BN_bin2bn(kP, sizeof(kP), nullptr)); ASSERT_TRUE(p); bssl::UniquePtr a(BN_bin2bn(kA, sizeof(kA), nullptr)); ASSERT_TRUE(a); bssl::UniquePtr b(BN_bin2bn(kB, sizeof(kB), nullptr)); ASSERT_TRUE(b); bssl::UniquePtr gx(BN_bin2bn(kX, sizeof(kX), nullptr)); ASSERT_TRUE(gx); bssl::UniquePtr gy(BN_bin2bn(kY, sizeof(kY), nullptr)); ASSERT_TRUE(gy); bssl::UniquePtr order(BN_bin2bn(kOrder, sizeof(kOrder), nullptr)); ASSERT_TRUE(order); bssl::UniquePtr group( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); ASSERT_TRUE(group); bssl::UniquePtr generator(EC_POINT_new(group.get())); ASSERT_TRUE(generator); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group.get(), generator.get(), gx.get(), gy.get(), ctx.get())); ASSERT_TRUE(EC_GROUP_set_generator(group.get(), generator.get(), order.get(), BN_value_one())); // |group| should not have a curve name. EXPECT_EQ(NID_undef, EC_GROUP_get_curve_name(group.get())); // Copy |key| to |key2| using |group|. bssl::UniquePtr key2(EC_KEY_new()); ASSERT_TRUE(key2); bssl::UniquePtr point(EC_POINT_new(group.get())); ASSERT_TRUE(point); bssl::UniquePtr x(BN_new()), y(BN_new()); ASSERT_TRUE(x); ASSERT_TRUE(EC_KEY_set_group(key2.get(), group.get())); ASSERT_TRUE( EC_KEY_set_private_key(key2.get(), EC_KEY_get0_private_key(key.get()))); ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( EC_KEY_get0_group(key.get()), EC_KEY_get0_public_key(key.get()), x.get(), y.get(), nullptr)); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), point.get(), x.get(), y.get(), nullptr)); ASSERT_TRUE(EC_KEY_set_public_key(key2.get(), point.get())); // The key must be valid according to the new group too. EXPECT_TRUE(EC_KEY_check_key(key2.get())); // Make a second instance of |group|. bssl::UniquePtr group2( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); ASSERT_TRUE(group2); bssl::UniquePtr generator2(EC_POINT_new(group2.get())); ASSERT_TRUE(generator2); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group2.get(), generator2.get(), gx.get(), gy.get(), ctx.get())); ASSERT_TRUE(EC_GROUP_set_generator(group2.get(), generator2.get(), order.get(), BN_value_one())); EXPECT_EQ(0, EC_GROUP_cmp(group.get(), group.get(), NULL)); EXPECT_EQ(0, EC_GROUP_cmp(group2.get(), group.get(), NULL)); // group3 uses the wrong generator. bssl::UniquePtr group3( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); ASSERT_TRUE(group3); bssl::UniquePtr generator3(EC_POINT_new(group3.get())); ASSERT_TRUE(generator3); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group3.get(), generator3.get(), x.get(), y.get(), ctx.get())); ASSERT_TRUE(EC_GROUP_set_generator(group3.get(), generator3.get(), order.get(), BN_value_one())); EXPECT_NE(0, EC_GROUP_cmp(group.get(), group3.get(), NULL)); #if !defined(BORINGSSL_SHARED_LIBRARY) // group4 has non-minimal components that do not fit in |EC_SCALAR| and the // future |EC_FELEM|. ASSERT_TRUE(bn_resize_words(p.get(), 32)); ASSERT_TRUE(bn_resize_words(a.get(), 32)); ASSERT_TRUE(bn_resize_words(b.get(), 32)); ASSERT_TRUE(bn_resize_words(gx.get(), 32)); ASSERT_TRUE(bn_resize_words(gy.get(), 32)); ASSERT_TRUE(bn_resize_words(order.get(), 32)); bssl::UniquePtr group4( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); ASSERT_TRUE(group4); bssl::UniquePtr generator4(EC_POINT_new(group4.get())); ASSERT_TRUE(generator4); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( group4.get(), generator4.get(), gx.get(), gy.get(), ctx.get())); ASSERT_TRUE(EC_GROUP_set_generator(group4.get(), generator4.get(), order.get(), BN_value_one())); EXPECT_EQ(0, EC_GROUP_cmp(group.get(), group4.get(), NULL)); #endif } TEST(ECTest, SetKeyWithoutGroup) { bssl::UniquePtr key(EC_KEY_new()); ASSERT_TRUE(key); // Private keys may not be configured without a group. EXPECT_FALSE(EC_KEY_set_private_key(key.get(), BN_value_one())); // Public keys may not be configured without a group. bssl::UniquePtr group( EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); ASSERT_TRUE(group); EXPECT_FALSE( EC_KEY_set_public_key(key.get(), EC_GROUP_get0_generator(group.get()))); } TEST(ECTest, SetNULLKey) { bssl::UniquePtr key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); ASSERT_TRUE(key); EXPECT_TRUE(EC_KEY_set_public_key( key.get(), EC_GROUP_get0_generator(EC_KEY_get0_group(key.get())))); EXPECT_TRUE(EC_KEY_get0_public_key(key.get())); // Setting a NULL public-key should clear the public-key and return zero, in // order to match OpenSSL behaviour exactly. EXPECT_FALSE(EC_KEY_set_public_key(key.get(), nullptr)); EXPECT_FALSE(EC_KEY_get0_public_key(key.get())); } TEST(ECTest, GroupMismatch) { bssl::UniquePtr key(EC_KEY_new_by_curve_name(NID_secp384r1)); ASSERT_TRUE(key); bssl::UniquePtr p256( EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); ASSERT_TRUE(p256); // Changing a key's group is invalid. EXPECT_FALSE(EC_KEY_set_group(key.get(), p256.get())); // Configuring a public key with the wrong group is invalid. EXPECT_FALSE( EC_KEY_set_public_key(key.get(), EC_GROUP_get0_generator(p256.get()))); } TEST(ECTest, EmptyKey) { bssl::UniquePtr key(EC_KEY_new()); ASSERT_TRUE(key); EXPECT_FALSE(EC_KEY_get0_group(key.get())); EXPECT_FALSE(EC_KEY_get0_public_key(key.get())); EXPECT_FALSE(EC_KEY_get0_private_key(key.get())); } static bssl::UniquePtr HexToBIGNUM(const char *hex) { BIGNUM *bn = nullptr; BN_hex2bn(&bn, hex); return bssl::UniquePtr(bn); } // Test that point arithmetic works with custom curves using an arbitrary |a|, // rather than -3, as is common (and more efficient). TEST(ECTest, BrainpoolP256r1) { static const char kP[] = "a9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377"; static const char kA[] = "7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9"; static const char kB[] = "26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6"; static const char kX[] = "8bd2aeb9cb7e57cb2c4b482ffc81b7afb9de27e1e3bd23c23a4453bd9ace3262"; static const char kY[] = "547ef835c3dac4fd97f8461a14611dc9c27745132ded8e545c1d54c72f046997"; static const char kN[] = "a9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7"; static const char kD[] = "0da21d76fed40dd82ac3314cce91abb585b5c4246e902b238a839609ea1e7ce1"; static const char kQX[] = "3a55e0341cab50452fe27b8a87e4775dec7a9daca94b0d84ad1e9f85b53ea513"; static const char kQY[] = "40088146b33bbbe81b092b41146774b35dd478cf056437cfb35ef0df2d269339"; bssl::UniquePtr p = HexToBIGNUM(kP), a = HexToBIGNUM(kA), b = HexToBIGNUM(kB), x = HexToBIGNUM(kX), y = HexToBIGNUM(kY), n = HexToBIGNUM(kN), d = HexToBIGNUM(kD), qx = HexToBIGNUM(kQX), qy = HexToBIGNUM(kQY); ASSERT_TRUE(p && a && b && x && y && n && d && qx && qy); bssl::UniquePtr group( EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), nullptr)); ASSERT_TRUE(group); bssl::UniquePtr g(EC_POINT_new(group.get())); ASSERT_TRUE(g); ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), g.get(), x.get(), y.get(), nullptr)); ASSERT_TRUE( EC_GROUP_set_generator(group.get(), g.get(), n.get(), BN_value_one())); bssl::UniquePtr q(EC_POINT_new(group.get())); ASSERT_TRUE(q); ASSERT_TRUE( EC_POINT_mul(group.get(), q.get(), d.get(), nullptr, nullptr, nullptr)); ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp(group.get(), q.get(), x.get(), y.get(), nullptr)); EXPECT_EQ(0, BN_cmp(x.get(), qx.get())); EXPECT_EQ(0, BN_cmp(y.get(), qy.get())); } class ECCurveTest : public testing::TestWithParam { public: const EC_GROUP *group() const { return group_.get(); } void SetUp() override { group_.reset(EC_GROUP_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(group_); } private: bssl::UniquePtr group_; }; TEST_P(ECCurveTest, SetAffine) { // Generate an EC_KEY. bssl::UniquePtr key(EC_KEY_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(key); ASSERT_TRUE(EC_KEY_generate_key(key.get())); EXPECT_TRUE(EC_POINT_is_on_curve(group(), EC_KEY_get0_public_key(key.get()), nullptr)); // Get the public key's coordinates. bssl::UniquePtr x(BN_new()); ASSERT_TRUE(x); bssl::UniquePtr y(BN_new()); ASSERT_TRUE(y); bssl::UniquePtr p(BN_new()); ASSERT_TRUE(p); EXPECT_TRUE(EC_POINT_get_affine_coordinates_GFp( group(), EC_KEY_get0_public_key(key.get()), x.get(), y.get(), nullptr)); EXPECT_TRUE( EC_GROUP_get_curve_GFp(group(), p.get(), nullptr, nullptr, nullptr)); // Points on the curve should be accepted. auto point = bssl::UniquePtr(EC_POINT_new(group())); ASSERT_TRUE(point); EXPECT_TRUE(EC_POINT_set_affine_coordinates_GFp(group(), point.get(), x.get(), y.get(), nullptr)); // Subtract one from |y| to make the point no longer on the curve. EXPECT_TRUE(BN_sub(y.get(), y.get(), BN_value_one())); // Points not on the curve should be rejected. bssl::UniquePtr invalid_point(EC_POINT_new(group())); ASSERT_TRUE(invalid_point); EXPECT_FALSE(EC_POINT_set_affine_coordinates_GFp(group(), invalid_point.get(), x.get(), y.get(), nullptr)); // Coordinates out of range should be rejected. EXPECT_TRUE(BN_add(y.get(), y.get(), BN_value_one())); EXPECT_TRUE(BN_add(y.get(), y.get(), p.get())); EXPECT_FALSE(EC_POINT_set_affine_coordinates_GFp(group(), invalid_point.get(), x.get(), y.get(), nullptr)); EXPECT_FALSE( EC_KEY_set_public_key_affine_coordinates(key.get(), x.get(), y.get())); } TEST_P(ECCurveTest, GenerateFIPS) { // Generate an EC_KEY. bssl::UniquePtr key(EC_KEY_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(key); ASSERT_TRUE(EC_KEY_generate_key_fips(key.get())); } TEST_P(ECCurveTest, AddingEqualPoints) { bssl::UniquePtr key(EC_KEY_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(key); ASSERT_TRUE(EC_KEY_generate_key(key.get())); bssl::UniquePtr p1(EC_POINT_new(group())); ASSERT_TRUE(p1); ASSERT_TRUE(EC_POINT_copy(p1.get(), EC_KEY_get0_public_key(key.get()))); bssl::UniquePtr p2(EC_POINT_new(group())); ASSERT_TRUE(p2); ASSERT_TRUE(EC_POINT_copy(p2.get(), EC_KEY_get0_public_key(key.get()))); bssl::UniquePtr double_p1(EC_POINT_new(group())); ASSERT_TRUE(double_p1); bssl::UniquePtr ctx(BN_CTX_new()); ASSERT_TRUE(ctx); ASSERT_TRUE(EC_POINT_dbl(group(), double_p1.get(), p1.get(), ctx.get())); bssl::UniquePtr p1_plus_p2(EC_POINT_new(group())); ASSERT_TRUE(p1_plus_p2); ASSERT_TRUE( EC_POINT_add(group(), p1_plus_p2.get(), p1.get(), p2.get(), ctx.get())); EXPECT_EQ(0, EC_POINT_cmp(group(), double_p1.get(), p1_plus_p2.get(), ctx.get())) << "A+A != 2A"; } TEST_P(ECCurveTest, MulZero) { bssl::UniquePtr point(EC_POINT_new(group())); ASSERT_TRUE(point); bssl::UniquePtr zero(BN_new()); ASSERT_TRUE(zero); BN_zero(zero.get()); ASSERT_TRUE(EC_POINT_mul(group(), point.get(), zero.get(), nullptr, nullptr, nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) << "g * 0 did not return point at infinity."; // Test that zero times an arbitrary point is also infinity. The generator is // used as the arbitrary point. bssl::UniquePtr generator(EC_POINT_new(group())); ASSERT_TRUE(generator); ASSERT_TRUE(EC_POINT_mul(group(), generator.get(), BN_value_one(), nullptr, nullptr, nullptr)); ASSERT_TRUE(EC_POINT_mul(group(), point.get(), nullptr, generator.get(), zero.get(), nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) << "p * 0 did not return point at infinity."; } // Test that multiplying by the order produces ∞ and, moreover, that callers may // do so. |EC_POINT_mul| is almost exclusively used with reduced scalars, with // this exception. This comes from consumers following NIST SP 800-56A section // 5.6.2.3.2. (Though all our curves have cofactor one, so this check isn't // useful.) TEST_P(ECCurveTest, MulOrder) { // Test that g × order = ∞. bssl::UniquePtr point(EC_POINT_new(group())); ASSERT_TRUE(point); ASSERT_TRUE(EC_POINT_mul(group(), point.get(), EC_GROUP_get0_order(group()), nullptr, nullptr, nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) << "g * order did not return point at infinity."; // Test that p × order = ∞, for some arbitrary p. bssl::UniquePtr forty_two(BN_new()); ASSERT_TRUE(forty_two); ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); ASSERT_TRUE(EC_POINT_mul(group(), point.get(), forty_two.get(), nullptr, nullptr, nullptr)); ASSERT_TRUE(EC_POINT_mul(group(), point.get(), nullptr, point.get(), EC_GROUP_get0_order(group()), nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) << "p * order did not return point at infinity."; } // Test that |EC_POINT_mul| works with out-of-range scalars. The operation will // not be constant-time, but we'll compute the right answer. TEST_P(ECCurveTest, MulOutOfRange) { bssl::UniquePtr n_minus_one(BN_dup(EC_GROUP_get0_order(group()))); ASSERT_TRUE(n_minus_one); ASSERT_TRUE(BN_sub_word(n_minus_one.get(), 1)); bssl::UniquePtr minus_one(BN_new()); ASSERT_TRUE(minus_one); ASSERT_TRUE(BN_one(minus_one.get())); BN_set_negative(minus_one.get(), 1); bssl::UniquePtr seven(BN_new()); ASSERT_TRUE(seven); ASSERT_TRUE(BN_set_word(seven.get(), 7)); bssl::UniquePtr ten_n_plus_seven( BN_dup(EC_GROUP_get0_order(group()))); ASSERT_TRUE(ten_n_plus_seven); ASSERT_TRUE(BN_mul_word(ten_n_plus_seven.get(), 10)); ASSERT_TRUE(BN_add_word(ten_n_plus_seven.get(), 7)); bssl::UniquePtr point1(EC_POINT_new(group())), point2(EC_POINT_new(group())); ASSERT_TRUE(point1); ASSERT_TRUE(point2); ASSERT_TRUE(EC_POINT_mul(group(), point1.get(), n_minus_one.get(), nullptr, nullptr, nullptr)); ASSERT_TRUE(EC_POINT_mul(group(), point2.get(), minus_one.get(), nullptr, nullptr, nullptr)); EXPECT_EQ(0, EC_POINT_cmp(group(), point1.get(), point2.get(), nullptr)) << "-1 * G and (n-1) * G did not give the same result"; ASSERT_TRUE(EC_POINT_mul(group(), point1.get(), seven.get(), nullptr, nullptr, nullptr)); ASSERT_TRUE(EC_POINT_mul(group(), point2.get(), ten_n_plus_seven.get(), nullptr, nullptr, nullptr)); EXPECT_EQ(0, EC_POINT_cmp(group(), point1.get(), point2.get(), nullptr)) << "7 * G and (10n + 7) * G did not give the same result"; } // Test that 10×∞ + G = G. TEST_P(ECCurveTest, Mul) { bssl::UniquePtr p(EC_POINT_new(group())); ASSERT_TRUE(p); bssl::UniquePtr result(EC_POINT_new(group())); ASSERT_TRUE(result); bssl::UniquePtr n(BN_new()); ASSERT_TRUE(n); ASSERT_TRUE(EC_POINT_set_to_infinity(group(), p.get())); ASSERT_TRUE(BN_set_word(n.get(), 10)); // First check that 10×∞ = ∞. ASSERT_TRUE( EC_POINT_mul(group(), result.get(), nullptr, p.get(), n.get(), nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group(), result.get())); // Now check that 10×∞ + G = G. const EC_POINT *generator = EC_GROUP_get0_generator(group()); ASSERT_TRUE(EC_POINT_mul(group(), result.get(), BN_value_one(), p.get(), n.get(), nullptr)); EXPECT_EQ(0, EC_POINT_cmp(group(), result.get(), generator, nullptr)); } TEST_P(ECCurveTest, MulNonMinimal) { bssl::UniquePtr forty_two(BN_new()); ASSERT_TRUE(forty_two); ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); // Compute g × 42. bssl::UniquePtr point(EC_POINT_new(group())); ASSERT_TRUE(point); ASSERT_TRUE(EC_POINT_mul(group(), point.get(), forty_two.get(), nullptr, nullptr, nullptr)); // Compute it again with a non-minimal 42, much larger than the scalar. ASSERT_TRUE(bn_resize_words(forty_two.get(), 64)); bssl::UniquePtr point2(EC_POINT_new(group())); ASSERT_TRUE(point2); ASSERT_TRUE(EC_POINT_mul(group(), point2.get(), forty_two.get(), nullptr, nullptr, nullptr)); EXPECT_EQ(0, EC_POINT_cmp(group(), point.get(), point2.get(), nullptr)); } // Test that EC_KEY_set_private_key rejects invalid values. TEST_P(ECCurveTest, SetInvalidPrivateKey) { bssl::UniquePtr key(EC_KEY_new_by_curve_name(GetParam().nid)); ASSERT_TRUE(key); bssl::UniquePtr bn(BN_new()); ASSERT_TRUE(BN_one(bn.get())); BN_set_negative(bn.get(), 1); EXPECT_FALSE(EC_KEY_set_private_key(key.get(), bn.get())) << "Unexpectedly set a key of -1"; ERR_clear_error(); ASSERT_TRUE( BN_copy(bn.get(), EC_GROUP_get0_order(EC_KEY_get0_group(key.get())))); EXPECT_FALSE(EC_KEY_set_private_key(key.get(), bn.get())) << "Unexpectedly set a key of the group order."; ERR_clear_error(); } TEST_P(ECCurveTest, IgnoreOct2PointReturnValue) { bssl::UniquePtr forty_two(BN_new()); ASSERT_TRUE(forty_two); ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); // Compute g × 42. bssl::UniquePtr point(EC_POINT_new(group())); ASSERT_TRUE(point); ASSERT_TRUE(EC_POINT_mul(group(), point.get(), forty_two.get(), nullptr, nullptr, nullptr)); // Serialize the point. size_t serialized_len = EC_POINT_point2oct( group(), point.get(), POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr); ASSERT_NE(0u, serialized_len); std::vector serialized(serialized_len); ASSERT_EQ( serialized_len, EC_POINT_point2oct(group(), point.get(), POINT_CONVERSION_UNCOMPRESSED, serialized.data(), serialized_len, nullptr)); // Create a serialized point that is not on the curve. serialized[serialized_len - 1]++; ASSERT_FALSE(EC_POINT_oct2point(group(), point.get(), serialized.data(), serialized.size(), nullptr)); // After a failure, |point| should have been set to the generator to defend // against code that doesn't check the return value. ASSERT_EQ(0, EC_POINT_cmp(group(), point.get(), EC_GROUP_get0_generator(group()), nullptr)); } TEST_P(ECCurveTest, DoubleSpecialCase) { const EC_POINT *g = EC_GROUP_get0_generator(group()); bssl::UniquePtr two_g(EC_POINT_new(group())); ASSERT_TRUE(two_g); ASSERT_TRUE(EC_POINT_dbl(group(), two_g.get(), g, nullptr)); bssl::UniquePtr p(EC_POINT_new(group())); ASSERT_TRUE(p); ASSERT_TRUE(EC_POINT_mul(group(), p.get(), BN_value_one(), g, BN_value_one(), nullptr)); EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), two_g.get(), nullptr)); EC_SCALAR one; ASSERT_TRUE(ec_bignum_to_scalar(group(), &one, BN_value_one())); ASSERT_TRUE( ec_point_mul_scalar_public(group(), &p->raw, &one, &g->raw, &one)); EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), two_g.get(), nullptr)); } // This a regression test for a P-224 bug, but we may as well run it for all // curves. TEST_P(ECCurveTest, P224Bug) { // P = -G const EC_POINT *g = EC_GROUP_get0_generator(group()); bssl::UniquePtr p(EC_POINT_dup(g, group())); ASSERT_TRUE(p); ASSERT_TRUE(EC_POINT_invert(group(), p.get(), nullptr)); // Compute 31 * P + 32 * G = G bssl::UniquePtr ret(EC_POINT_new(group())); ASSERT_TRUE(ret); bssl::UniquePtr bn31(BN_new()), bn32(BN_new()); ASSERT_TRUE(bn31); ASSERT_TRUE(bn32); ASSERT_TRUE(BN_set_word(bn31.get(), 31)); ASSERT_TRUE(BN_set_word(bn32.get(), 32)); ASSERT_TRUE(EC_POINT_mul(group(), ret.get(), bn32.get(), p.get(), bn31.get(), nullptr)); EXPECT_EQ(0, EC_POINT_cmp(group(), ret.get(), g, nullptr)); // Repeat the computation with |ec_point_mul_scalar_public|, which ties the // additions together. EC_SCALAR sc31, sc32; ASSERT_TRUE(ec_bignum_to_scalar(group(), &sc31, bn31.get())); ASSERT_TRUE(ec_bignum_to_scalar(group(), &sc32, bn32.get())); ASSERT_TRUE( ec_point_mul_scalar_public(group(), &ret->raw, &sc32, &p->raw, &sc31)); EXPECT_EQ(0, EC_POINT_cmp(group(), ret.get(), g, nullptr)); } TEST_P(ECCurveTest, GPlusMinusG) { const EC_POINT *g = EC_GROUP_get0_generator(group()); bssl::UniquePtr p(EC_POINT_dup(g, group())); ASSERT_TRUE(p); ASSERT_TRUE(EC_POINT_invert(group(), p.get(), nullptr)); bssl::UniquePtr sum(EC_POINT_new(group())); ASSERT_TRUE(EC_POINT_add(group(), sum.get(), g, p.get(), nullptr)); EXPECT_TRUE(EC_POINT_is_at_infinity(group(), sum.get())); } static std::vector AllCurves() { const size_t num_curves = EC_get_builtin_curves(nullptr, 0); std::vector curves(num_curves); EC_get_builtin_curves(curves.data(), num_curves); return curves; } static std::string CurveToString( const testing::TestParamInfo ¶ms) { // The comment field contains characters GTest rejects, so use the OBJ name. return OBJ_nid2sn(params.param.nid); } INSTANTIATE_TEST_SUITE_P(, ECCurveTest, testing::ValuesIn(AllCurves()), CurveToString); static bssl::UniquePtr GetCurve(FileTest *t, const char *key) { std::string curve_name; if (!t->GetAttribute(&curve_name, key)) { return nullptr; } if (curve_name == "P-224") { return bssl::UniquePtr(EC_GROUP_new_by_curve_name(NID_secp224r1)); } if (curve_name == "P-256") { return bssl::UniquePtr(EC_GROUP_new_by_curve_name( NID_X9_62_prime256v1)); } if (curve_name == "P-384") { return bssl::UniquePtr(EC_GROUP_new_by_curve_name(NID_secp384r1)); } if (curve_name == "P-521") { return bssl::UniquePtr(EC_GROUP_new_by_curve_name(NID_secp521r1)); } t->PrintLine("Unknown curve '%s'", curve_name.c_str()); return nullptr; } static bssl::UniquePtr GetBIGNUM(FileTest *t, const char *key) { std::vector bytes; if (!t->GetBytes(&bytes, key)) { return nullptr; } return bssl::UniquePtr( BN_bin2bn(bytes.data(), bytes.size(), nullptr)); } TEST(ECTest, ScalarBaseMultVectors) { bssl::UniquePtr ctx(BN_CTX_new()); ASSERT_TRUE(ctx); FileTestGTest("crypto/fipsmodule/ec/ec_scalar_base_mult_tests.txt", [&](FileTest *t) { bssl::UniquePtr group = GetCurve(t, "Curve"); ASSERT_TRUE(group); bssl::UniquePtr n = GetBIGNUM(t, "N"); ASSERT_TRUE(n); bssl::UniquePtr x = GetBIGNUM(t, "X"); ASSERT_TRUE(x); bssl::UniquePtr y = GetBIGNUM(t, "Y"); ASSERT_TRUE(y); bool is_infinity = BN_is_zero(x.get()) && BN_is_zero(y.get()); bssl::UniquePtr px(BN_new()); ASSERT_TRUE(px); bssl::UniquePtr py(BN_new()); ASSERT_TRUE(py); auto check_point = [&](const EC_POINT *p) { if (is_infinity) { EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), p)); } else { ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( group.get(), p, px.get(), py.get(), ctx.get())); EXPECT_EQ(0, BN_cmp(x.get(), px.get())); EXPECT_EQ(0, BN_cmp(y.get(), py.get())); } }; const EC_POINT *g = EC_GROUP_get0_generator(group.get()); bssl::UniquePtr p(EC_POINT_new(group.get())); ASSERT_TRUE(p); // Test single-point multiplication. ASSERT_TRUE(EC_POINT_mul(group.get(), p.get(), n.get(), nullptr, nullptr, ctx.get())); check_point(p.get()); ASSERT_TRUE( EC_POINT_mul(group.get(), p.get(), nullptr, g, n.get(), ctx.get())); check_point(p.get()); // These tests take a very long time, but are worth running when we make // non-trivial changes to the EC code. #if 0 // Test two-point multiplication. bssl::UniquePtr a(BN_new()), b(BN_new()); for (int i = -64; i < 64; i++) { SCOPED_TRACE(i); ASSERT_TRUE(BN_set_word(a.get(), abs(i))); if (i < 0) { ASSERT_TRUE(BN_sub(a.get(), EC_GROUP_get0_order(group.get()), a.get())); } ASSERT_TRUE(BN_copy(b.get(), n.get())); ASSERT_TRUE(BN_sub(b.get(), b.get(), a.get())); if (BN_is_negative(b.get())) { ASSERT_TRUE(BN_add(b.get(), b.get(), EC_GROUP_get0_order(group.get()))); } ASSERT_TRUE( EC_POINT_mul(group.get(), p.get(), a.get(), g, b.get(), ctx.get())); check_point(p.get()); EC_SCALAR a_scalar, b_scalar; ASSERT_TRUE(ec_bignum_to_scalar(group.get(), &a_scalar, a.get())); ASSERT_TRUE(ec_bignum_to_scalar(group.get(), &b_scalar, b.get())); ASSERT_TRUE(ec_point_mul_scalar_public(group.get(), &p->raw, &a_scalar, &g->raw, &b_scalar)); check_point(p.get()); } #endif }); }