// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // SSE2 version of speed-critical encoding functions. // // Author: Christian Duvivier (cduvivier@google.com) #include "./dsp.h" #if defined(WEBP_USE_SSE2) #include // for abs() #include #include "../enc/cost.h" #include "../enc/vp8enci.h" #include "../utils/utils.h" //------------------------------------------------------------------------------ // Quite useful macro for debugging. Left here for convenience. #if 0 #include static void PrintReg(const __m128i r, const char* const name, int size) { int n; union { __m128i r; uint8_t i8[16]; uint16_t i16[8]; uint32_t i32[4]; uint64_t i64[2]; } tmp; tmp.r = r; printf("%s\t: ", name); if (size == 8) { for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]); } else if (size == 16) { for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]); } else if (size == 32) { for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]); } else { for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]); } printf("\n"); } #endif //------------------------------------------------------------------------------ // Compute susceptibility based on DCT-coeff histograms: // the higher, the "easier" the macroblock is to compress. static void CollectHistogram(const uint8_t* ref, const uint8_t* pred, int start_block, int end_block, VP8Histogram* const histo) { const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); int j; for (j = start_block; j < end_block; ++j) { int16_t out[16]; int k; VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); // Convert coefficients to bin (within out[]). { // Load. const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative) const __m128i sign0 = _mm_srai_epi16(out0, 15); const __m128i sign1 = _mm_srai_epi16(out1, 15); // abs(out) = (out ^ sign) - sign const __m128i xor0 = _mm_xor_si128(out0, sign0); const __m128i xor1 = _mm_xor_si128(out1, sign1); const __m128i abs0 = _mm_sub_epi16(xor0, sign0); const __m128i abs1 = _mm_sub_epi16(xor1, sign1); // v = abs(out) >> 3 const __m128i v0 = _mm_srai_epi16(abs0, 3); const __m128i v1 = _mm_srai_epi16(abs1, 3); // bin = min(v, MAX_COEFF_THRESH) const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); // Store. _mm_storeu_si128((__m128i*)&out[0], bin0); _mm_storeu_si128((__m128i*)&out[8], bin1); } // Convert coefficients to bin. for (k = 0; k < 16; ++k) { histo->distribution[out[k]]++; } } } //------------------------------------------------------------------------------ // Transforms (Paragraph 14.4) // Does one or two inverse transforms. static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst, int do_two) { // This implementation makes use of 16-bit fixed point versions of two // multiply constants: // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 // // To be able to use signed 16-bit integers, we use the following trick to // have constants within range: // - Associated constants are obtained by subtracting the 16-bit fixed point // version of one: // k = K - (1 << 16) => K = k + (1 << 16) // K1 = 85267 => k1 = 20091 // K2 = 35468 => k2 = -30068 // - The multiplication of a variable by a constant become the sum of the // variable and the multiplication of that variable by the associated // constant: // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x const __m128i k1 = _mm_set1_epi16(20091); const __m128i k2 = _mm_set1_epi16(-30068); __m128i T0, T1, T2, T3; // Load and concatenate the transform coefficients (we'll do two inverse // transforms in parallel). In the case of only one inverse transform, the // second half of the vectors will just contain random value we'll never // use nor store. __m128i in0, in1, in2, in3; { in0 = _mm_loadl_epi64((__m128i*)&in[0]); in1 = _mm_loadl_epi64((__m128i*)&in[4]); in2 = _mm_loadl_epi64((__m128i*)&in[8]); in3 = _mm_loadl_epi64((__m128i*)&in[12]); // a00 a10 a20 a30 x x x x // a01 a11 a21 a31 x x x x // a02 a12 a22 a32 x x x x // a03 a13 a23 a33 x x x x if (do_two) { const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); in0 = _mm_unpacklo_epi64(in0, inB0); in1 = _mm_unpacklo_epi64(in1, inB1); in2 = _mm_unpacklo_epi64(in2, inB2); in3 = _mm_unpacklo_epi64(in3, inB3); // a00 a10 a20 a30 b00 b10 b20 b30 // a01 a11 a21 a31 b01 b11 b21 b31 // a02 a12 a22 a32 b02 b12 b22 b32 // a03 a13 a23 a33 b03 b13 b23 b33 } } // Vertical pass and subsequent transpose. { // First pass, c and d calculations are longer because of the "trick" // multiplications. const __m128i a = _mm_add_epi16(in0, in2); const __m128i b = _mm_sub_epi16(in0, in2); // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 const __m128i c1 = _mm_mulhi_epi16(in1, k2); const __m128i c2 = _mm_mulhi_epi16(in3, k1); const __m128i c3 = _mm_sub_epi16(in1, in3); const __m128i c4 = _mm_sub_epi16(c1, c2); const __m128i c = _mm_add_epi16(c3, c4); // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 const __m128i d1 = _mm_mulhi_epi16(in1, k1); const __m128i d2 = _mm_mulhi_epi16(in3, k2); const __m128i d3 = _mm_add_epi16(in1, in3); const __m128i d4 = _mm_add_epi16(d1, d2); const __m128i d = _mm_add_epi16(d3, d4); // Second pass. const __m128i tmp0 = _mm_add_epi16(a, d); const __m128i tmp1 = _mm_add_epi16(b, c); const __m128i tmp2 = _mm_sub_epi16(b, c); const __m128i tmp3 = _mm_sub_epi16(a, d); // Transpose the two 4x4. // a00 a01 a02 a03 b00 b01 b02 b03 // a10 a11 a12 a13 b10 b11 b12 b13 // a20 a21 a22 a23 b20 b21 b22 b23 // a30 a31 a32 a33 b30 b31 b32 b33 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1); const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3); const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1); const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3); // a00 a10 a01 a11 a02 a12 a03 a13 // a20 a30 a21 a31 a22 a32 a23 a33 // b00 b10 b01 b11 b02 b12 b03 b13 // b20 b30 b21 b31 b22 b32 b23 b33 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); // a00 a10 a20 a30 a01 a11 a21 a31 // b00 b10 b20 b30 b01 b11 b21 b31 // a02 a12 a22 a32 a03 a13 a23 a33 // b02 b12 a22 b32 b03 b13 b23 b33 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); // a00 a10 a20 a30 b00 b10 b20 b30 // a01 a11 a21 a31 b01 b11 b21 b31 // a02 a12 a22 a32 b02 b12 b22 b32 // a03 a13 a23 a33 b03 b13 b23 b33 } // Horizontal pass and subsequent transpose. { // First pass, c and d calculations are longer because of the "trick" // multiplications. const __m128i four = _mm_set1_epi16(4); const __m128i dc = _mm_add_epi16(T0, four); const __m128i a = _mm_add_epi16(dc, T2); const __m128i b = _mm_sub_epi16(dc, T2); // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 const __m128i c1 = _mm_mulhi_epi16(T1, k2); const __m128i c2 = _mm_mulhi_epi16(T3, k1); const __m128i c3 = _mm_sub_epi16(T1, T3); const __m128i c4 = _mm_sub_epi16(c1, c2); const __m128i c = _mm_add_epi16(c3, c4); // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 const __m128i d1 = _mm_mulhi_epi16(T1, k1); const __m128i d2 = _mm_mulhi_epi16(T3, k2); const __m128i d3 = _mm_add_epi16(T1, T3); const __m128i d4 = _mm_add_epi16(d1, d2); const __m128i d = _mm_add_epi16(d3, d4); // Second pass. const __m128i tmp0 = _mm_add_epi16(a, d); const __m128i tmp1 = _mm_add_epi16(b, c); const __m128i tmp2 = _mm_sub_epi16(b, c); const __m128i tmp3 = _mm_sub_epi16(a, d); const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); // Transpose the two 4x4. // a00 a01 a02 a03 b00 b01 b02 b03 // a10 a11 a12 a13 b10 b11 b12 b13 // a20 a21 a22 a23 b20 b21 b22 b23 // a30 a31 a32 a33 b30 b31 b32 b33 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1); const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3); const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1); const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3); // a00 a10 a01 a11 a02 a12 a03 a13 // a20 a30 a21 a31 a22 a32 a23 a33 // b00 b10 b01 b11 b02 b12 b03 b13 // b20 b30 b21 b31 b22 b32 b23 b33 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); // a00 a10 a20 a30 a01 a11 a21 a31 // b00 b10 b20 b30 b01 b11 b21 b31 // a02 a12 a22 a32 a03 a13 a23 a33 // b02 b12 a22 b32 b03 b13 b23 b33 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); // a00 a10 a20 a30 b00 b10 b20 b30 // a01 a11 a21 a31 b01 b11 b21 b31 // a02 a12 a22 a32 b02 b12 b22 b32 // a03 a13 a23 a33 b03 b13 b23 b33 } // Add inverse transform to 'ref' and store. { const __m128i zero = _mm_setzero_si128(); // Load the reference(s). __m128i ref0, ref1, ref2, ref3; if (do_two) { // Load eight bytes/pixels per line. ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); } else { // Load four bytes/pixels per line. ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]); ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]); ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]); ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]); } // Convert to 16b. ref0 = _mm_unpacklo_epi8(ref0, zero); ref1 = _mm_unpacklo_epi8(ref1, zero); ref2 = _mm_unpacklo_epi8(ref2, zero); ref3 = _mm_unpacklo_epi8(ref3, zero); // Add the inverse transform(s). ref0 = _mm_add_epi16(ref0, T0); ref1 = _mm_add_epi16(ref1, T1); ref2 = _mm_add_epi16(ref2, T2); ref3 = _mm_add_epi16(ref3, T3); // Unsigned saturate to 8b. ref0 = _mm_packus_epi16(ref0, ref0); ref1 = _mm_packus_epi16(ref1, ref1); ref2 = _mm_packus_epi16(ref2, ref2); ref3 = _mm_packus_epi16(ref3, ref3); // Store the results. if (do_two) { // Store eight bytes/pixels per line. _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); } else { // Store four bytes/pixels per line. *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0); *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1); *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2); *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3); } } } static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) { const __m128i zero = _mm_setzero_si128(); const __m128i seven = _mm_set1_epi16(7); const __m128i k937 = _mm_set1_epi32(937); const __m128i k1812 = _mm_set1_epi32(1812); const __m128i k51000 = _mm_set1_epi32(51000); const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, 5352, 2217, 5352, 2217); const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, 2217, -5352, 2217, -5352); const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, 2217, 5352, 2217, 5352); const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, -5352, 2217, -5352, 2217); __m128i v01, v32; // Difference between src and ref and initial transpose. { // Load src and convert to 16b. const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]); const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]); const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]); const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]); const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); // Load ref and convert to 16b. const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); // Compute difference. -> 00 01 02 03 00 00 00 00 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); // Unpack and shuffle // 00 01 02 03 0 0 0 0 // 10 11 12 13 0 0 0 0 // 20 21 22 23 0 0 0 0 // 30 31 32 33 0 0 0 0 const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1); const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3); // 00 01 10 11 02 03 12 13 // 20 21 30 31 22 23 32 33 const __m128i shuf01_p = _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1)); const __m128i shuf23_p = _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1)); // 00 01 10 11 03 02 13 12 // 20 21 30 31 23 22 33 32 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); // 00 01 10 11 20 21 30 31 // 03 02 13 12 23 22 33 32 const __m128i a01 = _mm_add_epi16(s01, s32); const __m128i a32 = _mm_sub_epi16(s01, s32); // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); v01 = _mm_unpacklo_epi32(s_lo, s_hi); v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. } // Second pass { // Same operations are done on the (0,3) and (1,2) pairs. // a0 = v0 + v3 // a1 = v1 + v2 // a3 = v0 - v3 // a2 = v1 - v2 const __m128i a01 = _mm_add_epi16(v01, v32); const __m128i a32 = _mm_sub_epi16(v01, v32); const __m128i a11 = _mm_unpackhi_epi64(a01, a01); const __m128i a22 = _mm_unpackhi_epi64(a32, a32); const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); // d0 = (a0 + a1 + 7) >> 4; // d2 = (a0 - a1 + 7) >> 4; const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); const __m128i d0 = _mm_srai_epi16(c0, 4); const __m128i d2 = _mm_srai_epi16(c2, 4); // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) const __m128i b23 = _mm_unpacklo_epi16(a22, a32); const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); const __m128i d3 = _mm_add_epi32(c3, k51000); const __m128i e1 = _mm_srai_epi32(d1, 16); const __m128i e3 = _mm_srai_epi32(d3, 16); const __m128i f1 = _mm_packs_epi32(e1, e1); const __m128i f3 = _mm_packs_epi32(e3, e3); // f1 = f1 + (a3 != 0); // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the // desired (0, 1), we add one earlier through k12000_plus_one. // -> f1 = f1 + 1 - (a3 == 0) const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); _mm_storeu_si128((__m128i*)&out[0], d0_g1); _mm_storeu_si128((__m128i*)&out[8], d2_f3); } } static void FTransformWHT(const int16_t* in, int16_t* out) { int32_t tmp[16]; int i; for (i = 0; i < 4; ++i, in += 64) { const int a0 = (in[0 * 16] + in[2 * 16]); const int a1 = (in[1 * 16] + in[3 * 16]); const int a2 = (in[1 * 16] - in[3 * 16]); const int a3 = (in[0 * 16] - in[2 * 16]); tmp[0 + i * 4] = a0 + a1; tmp[1 + i * 4] = a3 + a2; tmp[2 + i * 4] = a3 - a2; tmp[3 + i * 4] = a0 - a1; } { const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]); const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]); const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]); const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]); const __m128i a0 = _mm_add_epi32(src0, src2); const __m128i a1 = _mm_add_epi32(src1, src3); const __m128i a2 = _mm_sub_epi32(src1, src3); const __m128i a3 = _mm_sub_epi32(src0, src2); const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1); const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1); const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1); const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1); const __m128i out0 = _mm_packs_epi32(b0, b1); const __m128i out1 = _mm_packs_epi32(b2, b3); _mm_storeu_si128((__m128i*)&out[0], out0); _mm_storeu_si128((__m128i*)&out[8], out1); } } //------------------------------------------------------------------------------ // Metric static int SSE_Nx4(const uint8_t* a, const uint8_t* b, int num_quads, int do_16) { const __m128i zero = _mm_setzero_si128(); __m128i sum1 = zero; __m128i sum2 = zero; while (num_quads-- > 0) { // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok, // thanks to buffer over-allocation to that effect. const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]); const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]); const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]); const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]); const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]); const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]); const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]); const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]); // compute clip0(a-b) and clip0(b-a) const __m128i a0p = _mm_subs_epu8(a0, b0); const __m128i a0m = _mm_subs_epu8(b0, a0); const __m128i a1p = _mm_subs_epu8(a1, b1); const __m128i a1m = _mm_subs_epu8(b1, a1); const __m128i a2p = _mm_subs_epu8(a2, b2); const __m128i a2m = _mm_subs_epu8(b2, a2); const __m128i a3p = _mm_subs_epu8(a3, b3); const __m128i a3m = _mm_subs_epu8(b3, a3); // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a) const __m128i diff0 = _mm_or_si128(a0p, a0m); const __m128i diff1 = _mm_or_si128(a1p, a1m); const __m128i diff2 = _mm_or_si128(a2p, a2m); const __m128i diff3 = _mm_or_si128(a3p, a3m); // unpack (only four operations, instead of eight) const __m128i low0 = _mm_unpacklo_epi8(diff0, zero); const __m128i low1 = _mm_unpacklo_epi8(diff1, zero); const __m128i low2 = _mm_unpacklo_epi8(diff2, zero); const __m128i low3 = _mm_unpacklo_epi8(diff3, zero); // multiply with self const __m128i low_madd0 = _mm_madd_epi16(low0, low0); const __m128i low_madd1 = _mm_madd_epi16(low1, low1); const __m128i low_madd2 = _mm_madd_epi16(low2, low2); const __m128i low_madd3 = _mm_madd_epi16(low3, low3); // collect in a cascading way const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1); const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3); sum1 = _mm_add_epi32(sum1, low_sum0); sum2 = _mm_add_epi32(sum2, low_sum1); if (do_16) { // if necessary, process the higher 8 bytes similarly const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero); const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero); const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero); const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero); const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0); const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1); const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2); const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3); const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1); const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3); sum1 = _mm_add_epi32(sum1, hi_sum0); sum2 = _mm_add_epi32(sum2, hi_sum1); } a += 4 * BPS; b += 4 * BPS; } { int32_t tmp[4]; const __m128i sum = _mm_add_epi32(sum1, sum2); _mm_storeu_si128((__m128i*)tmp, sum); return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); } } static int SSE16x16(const uint8_t* a, const uint8_t* b) { return SSE_Nx4(a, b, 4, 1); } static int SSE16x8(const uint8_t* a, const uint8_t* b) { return SSE_Nx4(a, b, 2, 1); } static int SSE8x8(const uint8_t* a, const uint8_t* b) { return SSE_Nx4(a, b, 2, 0); } static int SSE4x4(const uint8_t* a, const uint8_t* b) { const __m128i zero = _mm_setzero_si128(); // Load values. Note that we read 8 pixels instead of 4, // but the a/b buffers are over-allocated to that effect. const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]); const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]); const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]); const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]); const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]); const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]); const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]); const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]); // Combine pair of lines and convert to 16b. const __m128i a01 = _mm_unpacklo_epi32(a0, a1); const __m128i a23 = _mm_unpacklo_epi32(a2, a3); const __m128i b01 = _mm_unpacklo_epi32(b0, b1); const __m128i b23 = _mm_unpacklo_epi32(b2, b3); const __m128i a01s = _mm_unpacklo_epi8(a01, zero); const __m128i a23s = _mm_unpacklo_epi8(a23, zero); const __m128i b01s = _mm_unpacklo_epi8(b01, zero); const __m128i b23s = _mm_unpacklo_epi8(b23, zero); // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2 // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't // need absolute values, there is no need to do calculation // in 8bit as we are already in 16bit, ... Yet this is what // benchmarks the fastest! const __m128i d0 = _mm_subs_epu8(a01s, b01s); const __m128i d1 = _mm_subs_epu8(b01s, a01s); const __m128i d2 = _mm_subs_epu8(a23s, b23s); const __m128i d3 = _mm_subs_epu8(b23s, a23s); // Square and add them all together. const __m128i madd0 = _mm_madd_epi16(d0, d0); const __m128i madd1 = _mm_madd_epi16(d1, d1); const __m128i madd2 = _mm_madd_epi16(d2, d2); const __m128i madd3 = _mm_madd_epi16(d3, d3); const __m128i sum0 = _mm_add_epi32(madd0, madd1); const __m128i sum1 = _mm_add_epi32(madd2, madd3); const __m128i sum2 = _mm_add_epi32(sum0, sum1); int32_t tmp[4]; _mm_storeu_si128((__m128i*)tmp, sum2); return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); } //------------------------------------------------------------------------------ // Texture distortion // // We try to match the spectral content (weighted) between source and // reconstructed samples. // Hadamard transform // Returns the difference between the weighted sum of the absolute value of // transformed coefficients. static int TTransform(const uint8_t* inA, const uint8_t* inB, const uint16_t* const w) { int32_t sum[4]; __m128i tmp_0, tmp_1, tmp_2, tmp_3; const __m128i zero = _mm_setzero_si128(); // Load, combine and transpose inputs. { const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]); const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]); const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]); const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]); const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]); const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]); const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]); const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]); // Combine inA and inB (we'll do two transforms in parallel). const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0); const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1); const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2); const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3); // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0 // Transpose the two 4x4, discarding the filling zeroes. const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2); const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3); // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33 const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1); const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1); // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33 // Convert to 16b. tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero); tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero); tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero); tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero); // a00 a10 a20 a30 b00 b10 b20 b30 // a01 a11 a21 a31 b01 b11 b21 b31 // a02 a12 a22 a32 b02 b12 b22 b32 // a03 a13 a23 a33 b03 b13 b23 b33 } // Horizontal pass and subsequent transpose. { // Calculate a and b (two 4x4 at once). const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); const __m128i b0 = _mm_add_epi16(a0, a1); const __m128i b1 = _mm_add_epi16(a3, a2); const __m128i b2 = _mm_sub_epi16(a3, a2); const __m128i b3 = _mm_sub_epi16(a0, a1); // a00 a01 a02 a03 b00 b01 b02 b03 // a10 a11 a12 a13 b10 b11 b12 b13 // a20 a21 a22 a23 b20 b21 b22 b23 // a30 a31 a32 a33 b30 b31 b32 b33 // Transpose the two 4x4. const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1); const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3); const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1); const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3); // a00 a10 a01 a11 a02 a12 a03 a13 // a20 a30 a21 a31 a22 a32 a23 a33 // b00 b10 b01 b11 b02 b12 b03 b13 // b20 b30 b21 b31 b22 b32 b23 b33 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); // a00 a10 a20 a30 a01 a11 a21 a31 // b00 b10 b20 b30 b01 b11 b21 b31 // a02 a12 a22 a32 a03 a13 a23 a33 // b02 b12 a22 b32 b03 b13 b23 b33 tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); // a00 a10 a20 a30 b00 b10 b20 b30 // a01 a11 a21 a31 b01 b11 b21 b31 // a02 a12 a22 a32 b02 b12 b22 b32 // a03 a13 a23 a33 b03 b13 b23 b33 } // Vertical pass and difference of weighted sums. { // Load all inputs. // TODO(cduvivier): Make variable declarations and allocations aligned so // we can use _mm_load_si128 instead of _mm_loadu_si128. const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]); const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]); // Calculate a and b (two 4x4 at once). const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); const __m128i b0 = _mm_add_epi16(a0, a1); const __m128i b1 = _mm_add_epi16(a3, a2); const __m128i b2 = _mm_sub_epi16(a3, a2); const __m128i b3 = _mm_sub_epi16(a0, a1); // Separate the transforms of inA and inB. __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); { // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative) const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15); const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15); const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15); const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15); // b = abs(b) = (b ^ sign) - sign A_b0 = _mm_xor_si128(A_b0, sign_A_b0); A_b2 = _mm_xor_si128(A_b2, sign_A_b2); B_b0 = _mm_xor_si128(B_b0, sign_B_b0); B_b2 = _mm_xor_si128(B_b2, sign_B_b2); A_b0 = _mm_sub_epi16(A_b0, sign_A_b0); A_b2 = _mm_sub_epi16(A_b2, sign_A_b2); B_b0 = _mm_sub_epi16(B_b0, sign_B_b0); B_b2 = _mm_sub_epi16(B_b2, sign_B_b2); } // weighted sums A_b0 = _mm_madd_epi16(A_b0, w_0); A_b2 = _mm_madd_epi16(A_b2, w_8); B_b0 = _mm_madd_epi16(B_b0, w_0); B_b2 = _mm_madd_epi16(B_b2, w_8); A_b0 = _mm_add_epi32(A_b0, A_b2); B_b0 = _mm_add_epi32(B_b0, B_b2); // difference of weighted sums A_b0 = _mm_sub_epi32(A_b0, B_b0); _mm_storeu_si128((__m128i*)&sum[0], A_b0); } return sum[0] + sum[1] + sum[2] + sum[3]; } static int Disto4x4(const uint8_t* const a, const uint8_t* const b, const uint16_t* const w) { const int diff_sum = TTransform(a, b, w); return abs(diff_sum) >> 5; } static int Disto16x16(const uint8_t* const a, const uint8_t* const b, const uint16_t* const w) { int D = 0; int x, y; for (y = 0; y < 16 * BPS; y += 4 * BPS) { for (x = 0; x < 16; x += 4) { D += Disto4x4(a + x + y, b + x + y, w); } } return D; } //------------------------------------------------------------------------------ // Quantization // static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16], const uint16_t* const sharpen, const VP8Matrix* const mtx) { const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); const __m128i zero = _mm_setzero_si128(); __m128i coeff0, coeff8; __m128i out0, out8; __m128i packed_out; // Load all inputs. // TODO(cduvivier): Make variable declarations and allocations aligned so that // we can use _mm_load_si128 instead of _mm_loadu_si128. __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]); const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]); const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]); const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]); // extract sign(in) (0x0000 if positive, 0xffff if negative) const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); // coeff = abs(in) = (in ^ sign) - sign coeff0 = _mm_xor_si128(in0, sign0); coeff8 = _mm_xor_si128(in8, sign8); coeff0 = _mm_sub_epi16(coeff0, sign0); coeff8 = _mm_sub_epi16(coeff8, sign8); // coeff = abs(in) + sharpen if (sharpen != NULL) { const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&sharpen[0]); const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&sharpen[8]); coeff0 = _mm_add_epi16(coeff0, sharpen0); coeff8 = _mm_add_epi16(coeff8, sharpen8); } // out = (coeff * iQ + B) >> QFIX { // doing calculations with 32b precision (QFIX=17) // out = (coeff * iQ) const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); // out = (coeff * iQ + B) const __m128i bias_00 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]); const __m128i bias_04 = _mm_loadu_si128((__m128i*)&mtx->bias_[4]); const __m128i bias_08 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]); const __m128i bias_12 = _mm_loadu_si128((__m128i*)&mtx->bias_[12]); out_00 = _mm_add_epi32(out_00, bias_00); out_04 = _mm_add_epi32(out_04, bias_04); out_08 = _mm_add_epi32(out_08, bias_08); out_12 = _mm_add_epi32(out_12, bias_12); // out = QUANTDIV(coeff, iQ, B, QFIX) out_00 = _mm_srai_epi32(out_00, QFIX); out_04 = _mm_srai_epi32(out_04, QFIX); out_08 = _mm_srai_epi32(out_08, QFIX); out_12 = _mm_srai_epi32(out_12, QFIX); // pack result as 16b out0 = _mm_packs_epi32(out_00, out_04); out8 = _mm_packs_epi32(out_08, out_12); // if (coeff > 2047) coeff = 2047 out0 = _mm_min_epi16(out0, max_coeff_2047); out8 = _mm_min_epi16(out8, max_coeff_2047); } // get sign back (if (sign[j]) out_n = -out_n) out0 = _mm_xor_si128(out0, sign0); out8 = _mm_xor_si128(out8, sign8); out0 = _mm_sub_epi16(out0, sign0); out8 = _mm_sub_epi16(out8, sign8); // in = out * Q in0 = _mm_mullo_epi16(out0, q0); in8 = _mm_mullo_epi16(out8, q8); _mm_storeu_si128((__m128i*)&in[0], in0); _mm_storeu_si128((__m128i*)&in[8], in8); // zigzag the output before storing it. // // The zigzag pattern can almost be reproduced with a small sequence of // shuffles. After it, we only need to swap the 7th (ending up in third // position instead of twelfth) and 8th values. { __m128i outZ0, outZ8; outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); _mm_storeu_si128((__m128i*)&out[0], outZ0); _mm_storeu_si128((__m128i*)&out[8], outZ8); packed_out = _mm_packs_epi16(outZ0, outZ8); } { const int16_t outZ_12 = out[12]; const int16_t outZ_3 = out[3]; out[3] = outZ_12; out[12] = outZ_3; } // detect if all 'out' values are zeroes or not return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); } static int QuantizeBlock(int16_t in[16], int16_t out[16], const VP8Matrix* const mtx) { return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx); } static int QuantizeBlockWHT(int16_t in[16], int16_t out[16], const VP8Matrix* const mtx) { return DoQuantizeBlock(in, out, NULL, mtx); } // Forward declaration. void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs, VP8Residual* const res); void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs, VP8Residual* const res) { const __m128i c0 = _mm_loadu_si128((const __m128i*)coeffs); const __m128i c1 = _mm_loadu_si128((const __m128i*)(coeffs + 8)); // Use SSE to compare 8 values with a single instruction. const __m128i zero = _mm_setzero_si128(); const __m128i m0 = _mm_cmpeq_epi16(c0, zero); const __m128i m1 = _mm_cmpeq_epi16(c1, zero); // Get the comparison results as a bitmask, consisting of two times 16 bits: // two identical bits for each result. Concatenate both bitmasks to get a // single 32 bit value. Negate the mask to get the position of entries that // are not equal to zero. We don't need to mask out least significant bits // according to res->first, since coeffs[0] is 0 if res->first > 0 const uint32_t mask = ~(((uint32_t)_mm_movemask_epi8(m1) << 16) | _mm_movemask_epi8(m0)); // The position of the most significant non-zero bit indicates the position of // the last non-zero value. Divide the result by two because __movemask_epi8 // operates on 8 bit values instead of 16 bit values. assert(res->first == 0 || coeffs[0] == 0); res->last = mask ? (BitsLog2Floor(mask) >> 1) : -1; res->coeffs = coeffs; } #endif // WEBP_USE_SSE2 //------------------------------------------------------------------------------ // Entry point extern void VP8EncDspInitSSE2(void); void VP8EncDspInitSSE2(void) { #if defined(WEBP_USE_SSE2) VP8CollectHistogram = CollectHistogram; VP8EncQuantizeBlock = QuantizeBlock; VP8EncQuantizeBlockWHT = QuantizeBlockWHT; VP8ITransform = ITransform; VP8FTransform = FTransform; VP8FTransformWHT = FTransformWHT; VP8SSE16x16 = SSE16x16; VP8SSE16x8 = SSE16x8; VP8SSE8x8 = SSE8x8; VP8SSE4x4 = SSE4x4; VP8TDisto4x4 = Disto4x4; VP8TDisto16x16 = Disto16x16; #endif // WEBP_USE_SSE2 }