/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "common_video/h264/h264_bitstream_parser.h" #include #include #include #include "common_video/h264/h264_common.h" #include "rtc_base/bit_buffer.h" #include "rtc_base/logging.h" namespace { const int kMaxAbsQpDeltaValue = 51; const int kMinQpValue = 0; const int kMaxQpValue = 51; } // namespace namespace webrtc { #define RETURN_ON_FAIL(x, res) \ if (!(x)) { \ RTC_LOG_F(LS_ERROR) << "FAILED: " #x; \ return res; \ } #define RETURN_INV_ON_FAIL(x) RETURN_ON_FAIL(x, kInvalidStream) H264BitstreamParser::H264BitstreamParser() {} H264BitstreamParser::~H264BitstreamParser() {} H264BitstreamParser::Result H264BitstreamParser::ParseNonParameterSetNalu( const uint8_t* source, size_t source_length, uint8_t nalu_type) { if (!sps_ || !pps_) return kInvalidStream; last_slice_qp_delta_ = absl::nullopt; const std::vector slice_rbsp = H264::ParseRbsp(source, source_length); if (slice_rbsp.size() < H264::kNaluTypeSize) return kInvalidStream; rtc::BitBuffer slice_reader(slice_rbsp.data() + H264::kNaluTypeSize, slice_rbsp.size() - H264::kNaluTypeSize); // Check to see if this is an IDR slice, which has an extra field to parse // out. bool is_idr = (source[0] & 0x0F) == H264::NaluType::kIdr; uint8_t nal_ref_idc = (source[0] & 0x60) >> 5; uint32_t golomb_tmp; uint32_t bits_tmp; // first_mb_in_slice: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); // slice_type: ue(v) uint32_t slice_type; RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&slice_type)); // slice_type's 5..9 range is used to indicate that all slices of a picture // have the same value of slice_type % 5, we don't care about that, so we map // to the corresponding 0..4 range. slice_type %= 5; // pic_parameter_set_id: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); if (sps_->separate_colour_plane_flag == 1) { // colour_plane_id RETURN_INV_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2)); } // frame_num: u(v) // Represented by log2_max_frame_num bits. RETURN_INV_ON_FAIL( slice_reader.ReadBits(&bits_tmp, sps_->log2_max_frame_num)); uint32_t field_pic_flag = 0; if (sps_->frame_mbs_only_flag == 0) { // field_pic_flag: u(1) RETURN_INV_ON_FAIL(slice_reader.ReadBits(&field_pic_flag, 1)); if (field_pic_flag != 0) { // bottom_field_flag: u(1) RETURN_INV_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1)); } } if (is_idr) { // idr_pic_id: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } // pic_order_cnt_lsb: u(v) // Represented by sps_.log2_max_pic_order_cnt_lsb bits. if (sps_->pic_order_cnt_type == 0) { RETURN_INV_ON_FAIL( slice_reader.ReadBits(&bits_tmp, sps_->log2_max_pic_order_cnt_lsb)); if (pps_->bottom_field_pic_order_in_frame_present_flag && field_pic_flag == 0) { // delta_pic_order_cnt_bottom: se(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } } if (sps_->pic_order_cnt_type == 1 && !sps_->delta_pic_order_always_zero_flag) { // delta_pic_order_cnt[0]: se(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); if (pps_->bottom_field_pic_order_in_frame_present_flag && !field_pic_flag) { // delta_pic_order_cnt[1]: se(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } } if (pps_->redundant_pic_cnt_present_flag) { // redundant_pic_cnt: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } if (slice_type == H264::SliceType::kB) { // direct_spatial_mv_pred_flag: u(1) RETURN_INV_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1)); } switch (slice_type) { case H264::SliceType::kP: case H264::SliceType::kB: case H264::SliceType::kSp: uint32_t num_ref_idx_active_override_flag; // num_ref_idx_active_override_flag: u(1) RETURN_INV_ON_FAIL( slice_reader.ReadBits(&num_ref_idx_active_override_flag, 1)); if (num_ref_idx_active_override_flag != 0) { // num_ref_idx_l0_active_minus1: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); if (slice_type == H264::SliceType::kB) { // num_ref_idx_l1_active_minus1: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } } break; default: break; } // assume nal_unit_type != 20 && nal_unit_type != 21: if (nalu_type == 20 || nalu_type == 21) { RTC_LOG(LS_ERROR) << "Unsupported nal unit type."; return kUnsupportedStream; } // if (nal_unit_type == 20 || nal_unit_type == 21) // ref_pic_list_mvc_modification() // else { // ref_pic_list_modification(): // |slice_type| checks here don't use named constants as they aren't named // in the spec for this segment. Keeping them consistent makes it easier to // verify that they are both the same. if (slice_type % 5 != 2 && slice_type % 5 != 4) { // ref_pic_list_modification_flag_l0: u(1) uint32_t ref_pic_list_modification_flag_l0; RETURN_INV_ON_FAIL( slice_reader.ReadBits(&ref_pic_list_modification_flag_l0, 1)); if (ref_pic_list_modification_flag_l0) { uint32_t modification_of_pic_nums_idc; do { // modification_of_pic_nums_idc: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb( &modification_of_pic_nums_idc)); if (modification_of_pic_nums_idc == 0 || modification_of_pic_nums_idc == 1) { // abs_diff_pic_num_minus1: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } else if (modification_of_pic_nums_idc == 2) { // long_term_pic_num: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } } while (modification_of_pic_nums_idc != 3); } } if (slice_type % 5 == 1) { // ref_pic_list_modification_flag_l1: u(1) uint32_t ref_pic_list_modification_flag_l1; RETURN_INV_ON_FAIL( slice_reader.ReadBits(&ref_pic_list_modification_flag_l1, 1)); if (ref_pic_list_modification_flag_l1) { uint32_t modification_of_pic_nums_idc; do { // modification_of_pic_nums_idc: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb( &modification_of_pic_nums_idc)); if (modification_of_pic_nums_idc == 0 || modification_of_pic_nums_idc == 1) { // abs_diff_pic_num_minus1: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } else if (modification_of_pic_nums_idc == 2) { // long_term_pic_num: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } } while (modification_of_pic_nums_idc != 3); } } } // TODO(pbos): Do we need support for pred_weight_table()? if ((pps_->weighted_pred_flag && (slice_type == H264::SliceType::kP || slice_type == H264::SliceType::kSp)) || (pps_->weighted_bipred_idc == 1 && slice_type == H264::SliceType::kB)) { RTC_LOG(LS_ERROR) << "Streams with pred_weight_table unsupported."; return kUnsupportedStream; } // if ((weighted_pred_flag && (slice_type == P || slice_type == SP)) || // (weighted_bipred_idc == 1 && slice_type == B)) { // pred_weight_table() // } if (nal_ref_idc != 0) { // dec_ref_pic_marking(): if (is_idr) { // no_output_of_prior_pics_flag: u(1) // long_term_reference_flag: u(1) RETURN_INV_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2)); } else { // adaptive_ref_pic_marking_mode_flag: u(1) uint32_t adaptive_ref_pic_marking_mode_flag; RETURN_INV_ON_FAIL( slice_reader.ReadBits(&adaptive_ref_pic_marking_mode_flag, 1)); if (adaptive_ref_pic_marking_mode_flag) { uint32_t memory_management_control_operation; do { // memory_management_control_operation: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb( &memory_management_control_operation)); if (memory_management_control_operation == 1 || memory_management_control_operation == 3) { // difference_of_pic_nums_minus1: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } if (memory_management_control_operation == 2) { // long_term_pic_num: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } if (memory_management_control_operation == 3 || memory_management_control_operation == 6) { // long_term_frame_idx: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } if (memory_management_control_operation == 4) { // max_long_term_frame_idx_plus1: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } } while (memory_management_control_operation != 0); } } } if (pps_->entropy_coding_mode_flag && slice_type != H264::SliceType::kI && slice_type != H264::SliceType::kSi) { // cabac_init_idc: ue(v) RETURN_INV_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp)); } int32_t last_slice_qp_delta; RETURN_INV_ON_FAIL( slice_reader.ReadSignedExponentialGolomb(&last_slice_qp_delta)); if (abs(last_slice_qp_delta) > kMaxAbsQpDeltaValue) { // Something has gone wrong, and the parsed value is invalid. RTC_LOG(LS_WARNING) << "Parsed QP value out of range."; return kInvalidStream; } last_slice_qp_delta_ = last_slice_qp_delta; return kOk; } void H264BitstreamParser::ParseSlice(const uint8_t* slice, size_t length) { H264::NaluType nalu_type = H264::ParseNaluType(slice[0]); switch (nalu_type) { case H264::NaluType::kSps: { sps_ = SpsParser::ParseSps(slice + H264::kNaluTypeSize, length - H264::kNaluTypeSize); if (!sps_) RTC_LOG(LS_WARNING) << "Unable to parse SPS from H264 bitstream."; break; } case H264::NaluType::kPps: { pps_ = PpsParser::ParsePps(slice + H264::kNaluTypeSize, length - H264::kNaluTypeSize); if (!pps_) RTC_LOG(LS_WARNING) << "Unable to parse PPS from H264 bitstream."; break; } case H264::NaluType::kAud: case H264::NaluType::kSei: break; // Ignore these nalus, as we don't care about their contents. default: Result res = ParseNonParameterSetNalu(slice, length, nalu_type); if (res != kOk) RTC_LOG(LS_INFO) << "Failed to parse bitstream. Error: " << res; break; } } void H264BitstreamParser::ParseBitstream(const uint8_t* bitstream, size_t length) { std::vector nalu_indices = H264::FindNaluIndices(bitstream, length); for (const H264::NaluIndex& index : nalu_indices) ParseSlice(&bitstream[index.payload_start_offset], index.payload_size); } bool H264BitstreamParser::GetLastSliceQp(int* qp) const { if (!last_slice_qp_delta_ || !pps_) return false; const int parsed_qp = 26 + pps_->pic_init_qp_minus26 + *last_slice_qp_delta_; if (parsed_qp < kMinQpValue || parsed_qp > kMaxQpValue) { RTC_LOG(LS_ERROR) << "Parsed invalid QP from bitstream."; return false; } *qp = parsed_qp; return true; } void H264BitstreamParser::ParseBitstream( rtc::ArrayView bitstream) { ParseBitstream(bitstream.data(), bitstream.size()); } absl::optional H264BitstreamParser::GetLastSliceQp() const { int qp; bool success = GetLastSliceQp(&qp); return success ? absl::optional(qp) : absl::nullopt; } } // namespace webrtc