/* * Copyright (c) 2010 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "media/base/video_adapter.h" #include #include #include #include #include #include "absl/types/optional.h" #include "media/base/video_common.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/time_utils.h" #include "system_wrappers/include/field_trial.h" namespace { struct Fraction { int numerator; int denominator; void DivideByGcd() { int g = cricket::GreatestCommonDivisor(numerator, denominator); numerator /= g; denominator /= g; } // Determines number of output pixels if both width and height of an input of // |input_pixels| pixels is scaled with the fraction numerator / denominator. int scale_pixel_count(int input_pixels) { return (numerator * numerator * input_pixels) / (denominator * denominator); } }; // Round |value_to_round| to a multiple of |multiple|. Prefer rounding upwards, // but never more than |max_value|. int roundUp(int value_to_round, int multiple, int max_value) { const int rounded_value = (value_to_round + multiple - 1) / multiple * multiple; return rounded_value <= max_value ? rounded_value : (max_value / multiple * multiple); } // Generates a scale factor that makes |input_pixels| close to |target_pixels|, // but no higher than |max_pixels|. Fraction FindScale(int input_width, int input_height, int target_pixels, int max_pixels, bool variable_start_scale_factor) { // This function only makes sense for a positive target. RTC_DCHECK_GT(target_pixels, 0); RTC_DCHECK_GT(max_pixels, 0); RTC_DCHECK_GE(max_pixels, target_pixels); const int input_pixels = input_width * input_height; // Don't scale up original. if (target_pixels >= input_pixels) return Fraction{1, 1}; Fraction current_scale = Fraction{1, 1}; Fraction best_scale = Fraction{1, 1}; if (variable_start_scale_factor) { // Start scaling down by 2/3 depending on |input_width| and |input_height|. if (input_width % 3 == 0 && input_height % 3 == 0) { // 2/3 (then alternates 3/4, 2/3, 3/4,...). current_scale = Fraction{6, 6}; } if (input_width % 9 == 0 && input_height % 9 == 0) { // 2/3, 2/3 (then alternates 3/4, 2/3, 3/4,...). current_scale = Fraction{36, 36}; } } // The minimum (absolute) difference between the number of output pixels and // the target pixel count. int min_pixel_diff = std::numeric_limits::max(); if (input_pixels <= max_pixels) { // Start condition for 1/1 case, if it is less than max. min_pixel_diff = std::abs(input_pixels - target_pixels); } // Alternately scale down by 3/4 and 2/3. This results in fractions which are // effectively scalable. For instance, starting at 1280x720 will result in // the series (3/4) => 960x540, (1/2) => 640x360, (3/8) => 480x270, // (1/4) => 320x180, (3/16) => 240x125, (1/8) => 160x90. while (current_scale.scale_pixel_count(input_pixels) > target_pixels) { if (current_scale.numerator % 3 == 0 && current_scale.denominator % 2 == 0) { // Multiply by 2/3. current_scale.numerator /= 3; current_scale.denominator /= 2; } else { // Multiply by 3/4. current_scale.numerator *= 3; current_scale.denominator *= 4; } int output_pixels = current_scale.scale_pixel_count(input_pixels); if (output_pixels <= max_pixels) { int diff = std::abs(target_pixels - output_pixels); if (diff < min_pixel_diff) { min_pixel_diff = diff; best_scale = current_scale; } } } best_scale.DivideByGcd(); return best_scale; } } // namespace namespace cricket { VideoAdapter::VideoAdapter(int source_resolution_alignment) : frames_in_(0), frames_out_(0), frames_scaled_(0), adaption_changes_(0), previous_width_(0), previous_height_(0), variable_start_scale_factor_(webrtc::field_trial::IsEnabled( "WebRTC-Video-VariableStartScaleFactor")), source_resolution_alignment_(source_resolution_alignment), resolution_alignment_(source_resolution_alignment), resolution_request_target_pixel_count_(std::numeric_limits::max()), resolution_request_max_pixel_count_(std::numeric_limits::max()), max_framerate_request_(std::numeric_limits::max()) {} VideoAdapter::VideoAdapter() : VideoAdapter(1) {} VideoAdapter::~VideoAdapter() {} bool VideoAdapter::KeepFrame(int64_t in_timestamp_ns) { int max_fps = max_framerate_request_; if (max_fps_) max_fps = std::min(max_fps, *max_fps_); if (max_fps <= 0) return false; // If |max_framerate_request_| is not set, it will default to maxint, which // will lead to a frame_interval_ns rounded to 0. int64_t frame_interval_ns = rtc::kNumNanosecsPerSec / max_fps; if (frame_interval_ns <= 0) { // Frame rate throttling not enabled. return true; } if (next_frame_timestamp_ns_) { // Time until next frame should be outputted. const int64_t time_until_next_frame_ns = (*next_frame_timestamp_ns_ - in_timestamp_ns); // Continue if timestamp is within expected range. if (std::abs(time_until_next_frame_ns) < 2 * frame_interval_ns) { // Drop if a frame shouldn't be outputted yet. if (time_until_next_frame_ns > 0) return false; // Time to output new frame. *next_frame_timestamp_ns_ += frame_interval_ns; return true; } } // First timestamp received or timestamp is way outside expected range, so // reset. Set first timestamp target to just half the interval to prefer // keeping frames in case of jitter. next_frame_timestamp_ns_ = in_timestamp_ns + frame_interval_ns / 2; return true; } bool VideoAdapter::AdaptFrameResolution(int in_width, int in_height, int64_t in_timestamp_ns, int* cropped_width, int* cropped_height, int* out_width, int* out_height) { webrtc::MutexLock lock(&mutex_); ++frames_in_; // The max output pixel count is the minimum of the requests from // OnOutputFormatRequest and OnResolutionFramerateRequest. int max_pixel_count = resolution_request_max_pixel_count_; // Select target aspect ratio and max pixel count depending on input frame // orientation. absl::optional> target_aspect_ratio; if (in_width > in_height) { target_aspect_ratio = target_landscape_aspect_ratio_; if (max_landscape_pixel_count_) max_pixel_count = std::min(max_pixel_count, *max_landscape_pixel_count_); } else { target_aspect_ratio = target_portrait_aspect_ratio_; if (max_portrait_pixel_count_) max_pixel_count = std::min(max_pixel_count, *max_portrait_pixel_count_); } int target_pixel_count = std::min(resolution_request_target_pixel_count_, max_pixel_count); // Drop the input frame if necessary. if (max_pixel_count <= 0 || !KeepFrame(in_timestamp_ns)) { // Show VAdapt log every 90 frames dropped. (3 seconds) if ((frames_in_ - frames_out_) % 90 == 0) { // TODO(fbarchard): Reduce to LS_VERBOSE when adapter info is not needed // in default calls. RTC_LOG(LS_INFO) << "VAdapt Drop Frame: scaled " << frames_scaled_ << " / out " << frames_out_ << " / in " << frames_in_ << " Changes: " << adaption_changes_ << " Input: " << in_width << "x" << in_height << " timestamp: " << in_timestamp_ns << " Output fps: " << max_framerate_request_ << "/" << max_fps_.value_or(-1) << " alignment: " << resolution_alignment_; } // Drop frame. return false; } // Calculate how the input should be cropped. if (!target_aspect_ratio || target_aspect_ratio->first <= 0 || target_aspect_ratio->second <= 0) { *cropped_width = in_width; *cropped_height = in_height; } else { const float requested_aspect = target_aspect_ratio->first / static_cast(target_aspect_ratio->second); *cropped_width = std::min(in_width, static_cast(in_height * requested_aspect)); *cropped_height = std::min(in_height, static_cast(in_width / requested_aspect)); } const Fraction scale = FindScale(*cropped_width, *cropped_height, target_pixel_count, max_pixel_count, variable_start_scale_factor_); // Adjust cropping slightly to get correctly aligned output size and a perfect // scale factor. *cropped_width = roundUp(*cropped_width, scale.denominator * resolution_alignment_, in_width); *cropped_height = roundUp( *cropped_height, scale.denominator * resolution_alignment_, in_height); RTC_DCHECK_EQ(0, *cropped_width % scale.denominator); RTC_DCHECK_EQ(0, *cropped_height % scale.denominator); // Calculate final output size. *out_width = *cropped_width / scale.denominator * scale.numerator; *out_height = *cropped_height / scale.denominator * scale.numerator; RTC_DCHECK_EQ(0, *out_width % resolution_alignment_); RTC_DCHECK_EQ(0, *out_height % resolution_alignment_); ++frames_out_; if (scale.numerator != scale.denominator) ++frames_scaled_; if (previous_width_ && (previous_width_ != *out_width || previous_height_ != *out_height)) { ++adaption_changes_; RTC_LOG(LS_INFO) << "Frame size changed: scaled " << frames_scaled_ << " / out " << frames_out_ << " / in " << frames_in_ << " Changes: " << adaption_changes_ << " Input: " << in_width << "x" << in_height << " Scale: " << scale.numerator << "/" << scale.denominator << " Output: " << *out_width << "x" << *out_height << " fps: " << max_framerate_request_ << "/" << max_fps_.value_or(-1) << " alignment: " << resolution_alignment_; } previous_width_ = *out_width; previous_height_ = *out_height; return true; } void VideoAdapter::OnOutputFormatRequest( const absl::optional& format) { absl::optional> target_aspect_ratio; absl::optional max_pixel_count; absl::optional max_fps; if (format) { target_aspect_ratio = std::make_pair(format->width, format->height); max_pixel_count = format->width * format->height; if (format->interval > 0) max_fps = rtc::kNumNanosecsPerSec / format->interval; } OnOutputFormatRequest(target_aspect_ratio, max_pixel_count, max_fps); } void VideoAdapter::OnOutputFormatRequest( const absl::optional>& target_aspect_ratio, const absl::optional& max_pixel_count, const absl::optional& max_fps) { absl::optional> target_landscape_aspect_ratio; absl::optional> target_portrait_aspect_ratio; if (target_aspect_ratio && target_aspect_ratio->first > 0 && target_aspect_ratio->second > 0) { // Maintain input orientation. const int max_side = std::max(target_aspect_ratio->first, target_aspect_ratio->second); const int min_side = std::min(target_aspect_ratio->first, target_aspect_ratio->second); target_landscape_aspect_ratio = std::make_pair(max_side, min_side); target_portrait_aspect_ratio = std::make_pair(min_side, max_side); } OnOutputFormatRequest(target_landscape_aspect_ratio, max_pixel_count, target_portrait_aspect_ratio, max_pixel_count, max_fps); } void VideoAdapter::OnOutputFormatRequest( const absl::optional>& target_landscape_aspect_ratio, const absl::optional& max_landscape_pixel_count, const absl::optional>& target_portrait_aspect_ratio, const absl::optional& max_portrait_pixel_count, const absl::optional& max_fps) { webrtc::MutexLock lock(&mutex_); target_landscape_aspect_ratio_ = target_landscape_aspect_ratio; max_landscape_pixel_count_ = max_landscape_pixel_count; target_portrait_aspect_ratio_ = target_portrait_aspect_ratio; max_portrait_pixel_count_ = max_portrait_pixel_count; max_fps_ = max_fps; next_frame_timestamp_ns_ = absl::nullopt; } void VideoAdapter::OnSinkWants(const rtc::VideoSinkWants& sink_wants) { webrtc::MutexLock lock(&mutex_); resolution_request_max_pixel_count_ = sink_wants.max_pixel_count; resolution_request_target_pixel_count_ = sink_wants.target_pixel_count.value_or( resolution_request_max_pixel_count_); max_framerate_request_ = sink_wants.max_framerate_fps; resolution_alignment_ = cricket::LeastCommonMultiple( source_resolution_alignment_, sink_wants.resolution_alignment); } } // namespace cricket