/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // This is the implementation of the PacketBuffer class. It is mostly based on // an STL list. The list is kept sorted at all times so that the next packet to // decode is at the beginning of the list. #include "modules/audio_coding/neteq/packet_buffer.h" #include #include #include #include #include #include "api/audio_codecs/audio_decoder.h" #include "api/neteq/tick_timer.h" #include "modules/audio_coding/neteq/decoder_database.h" #include "modules/audio_coding/neteq/statistics_calculator.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" namespace webrtc { namespace { // Predicate used when inserting packets in the buffer list. // Operator() returns true when |packet| goes before |new_packet|. class NewTimestampIsLarger { public: explicit NewTimestampIsLarger(const Packet& new_packet) : new_packet_(new_packet) {} bool operator()(const Packet& packet) { return (new_packet_ >= packet); } private: const Packet& new_packet_; }; // Returns true if both payload types are known to the decoder database, and // have the same sample rate. bool EqualSampleRates(uint8_t pt1, uint8_t pt2, const DecoderDatabase& decoder_database) { auto* di1 = decoder_database.GetDecoderInfo(pt1); auto* di2 = decoder_database.GetDecoderInfo(pt2); return di1 && di2 && di1->SampleRateHz() == di2->SampleRateHz(); } void LogPacketDiscarded(int codec_level, StatisticsCalculator* stats) { RTC_CHECK(stats); if (codec_level > 0) { stats->SecondaryPacketsDiscarded(1); } else { stats->PacketsDiscarded(1); } } } // namespace PacketBuffer::PacketBuffer(size_t max_number_of_packets, const TickTimer* tick_timer) : max_number_of_packets_(max_number_of_packets), tick_timer_(tick_timer) {} // Destructor. All packets in the buffer will be destroyed. PacketBuffer::~PacketBuffer() { Flush(); } // Flush the buffer. All packets in the buffer will be destroyed. void PacketBuffer::Flush() { buffer_.clear(); } bool PacketBuffer::Empty() const { return buffer_.empty(); } int PacketBuffer::InsertPacket(Packet&& packet, StatisticsCalculator* stats) { if (packet.empty()) { RTC_LOG(LS_WARNING) << "InsertPacket invalid packet"; return kInvalidPacket; } RTC_DCHECK_GE(packet.priority.codec_level, 0); RTC_DCHECK_GE(packet.priority.red_level, 0); int return_val = kOK; packet.waiting_time = tick_timer_->GetNewStopwatch(); if (buffer_.size() >= max_number_of_packets_) { // Buffer is full. Flush it. Flush(); stats->FlushedPacketBuffer(); RTC_LOG(LS_WARNING) << "Packet buffer flushed"; return_val = kFlushed; } // Get an iterator pointing to the place in the buffer where the new packet // should be inserted. The list is searched from the back, since the most // likely case is that the new packet should be near the end of the list. PacketList::reverse_iterator rit = std::find_if( buffer_.rbegin(), buffer_.rend(), NewTimestampIsLarger(packet)); // The new packet is to be inserted to the right of |rit|. If it has the same // timestamp as |rit|, which has a higher priority, do not insert the new // packet to list. if (rit != buffer_.rend() && packet.timestamp == rit->timestamp) { LogPacketDiscarded(packet.priority.codec_level, stats); return return_val; } // The new packet is to be inserted to the left of |it|. If it has the same // timestamp as |it|, which has a lower priority, replace |it| with the new // packet. PacketList::iterator it = rit.base(); if (it != buffer_.end() && packet.timestamp == it->timestamp) { LogPacketDiscarded(it->priority.codec_level, stats); it = buffer_.erase(it); } buffer_.insert(it, std::move(packet)); // Insert the packet at that position. return return_val; } int PacketBuffer::InsertPacketList( PacketList* packet_list, const DecoderDatabase& decoder_database, absl::optional* current_rtp_payload_type, absl::optional* current_cng_rtp_payload_type, StatisticsCalculator* stats) { RTC_DCHECK(stats); bool flushed = false; for (auto& packet : *packet_list) { if (decoder_database.IsComfortNoise(packet.payload_type)) { if (*current_cng_rtp_payload_type && **current_cng_rtp_payload_type != packet.payload_type) { // New CNG payload type implies new codec type. *current_rtp_payload_type = absl::nullopt; Flush(); flushed = true; } *current_cng_rtp_payload_type = packet.payload_type; } else if (!decoder_database.IsDtmf(packet.payload_type)) { // This must be speech. if ((*current_rtp_payload_type && **current_rtp_payload_type != packet.payload_type) || (*current_cng_rtp_payload_type && !EqualSampleRates(packet.payload_type, **current_cng_rtp_payload_type, decoder_database))) { *current_cng_rtp_payload_type = absl::nullopt; Flush(); flushed = true; } *current_rtp_payload_type = packet.payload_type; } int return_val = InsertPacket(std::move(packet), stats); if (return_val == kFlushed) { // The buffer flushed, but this is not an error. We can still continue. flushed = true; } else if (return_val != kOK) { // An error occurred. Delete remaining packets in list and return. packet_list->clear(); return return_val; } } packet_list->clear(); return flushed ? kFlushed : kOK; } int PacketBuffer::NextTimestamp(uint32_t* next_timestamp) const { if (Empty()) { return kBufferEmpty; } if (!next_timestamp) { return kInvalidPointer; } *next_timestamp = buffer_.front().timestamp; return kOK; } int PacketBuffer::NextHigherTimestamp(uint32_t timestamp, uint32_t* next_timestamp) const { if (Empty()) { return kBufferEmpty; } if (!next_timestamp) { return kInvalidPointer; } PacketList::const_iterator it; for (it = buffer_.begin(); it != buffer_.end(); ++it) { if (it->timestamp >= timestamp) { // Found a packet matching the search. *next_timestamp = it->timestamp; return kOK; } } return kNotFound; } const Packet* PacketBuffer::PeekNextPacket() const { return buffer_.empty() ? nullptr : &buffer_.front(); } absl::optional PacketBuffer::GetNextPacket() { if (Empty()) { // Buffer is empty. return absl::nullopt; } absl::optional packet(std::move(buffer_.front())); // Assert that the packet sanity checks in InsertPacket method works. RTC_DCHECK(!packet->empty()); buffer_.pop_front(); return packet; } int PacketBuffer::DiscardNextPacket(StatisticsCalculator* stats) { if (Empty()) { return kBufferEmpty; } // Assert that the packet sanity checks in InsertPacket method works. const Packet& packet = buffer_.front(); RTC_DCHECK(!packet.empty()); LogPacketDiscarded(packet.priority.codec_level, stats); buffer_.pop_front(); return kOK; } void PacketBuffer::DiscardOldPackets(uint32_t timestamp_limit, uint32_t horizon_samples, StatisticsCalculator* stats) { buffer_.remove_if([timestamp_limit, horizon_samples, stats](const Packet& p) { if (timestamp_limit == p.timestamp || !IsObsoleteTimestamp(p.timestamp, timestamp_limit, horizon_samples)) { return false; } LogPacketDiscarded(p.priority.codec_level, stats); return true; }); } void PacketBuffer::DiscardAllOldPackets(uint32_t timestamp_limit, StatisticsCalculator* stats) { DiscardOldPackets(timestamp_limit, 0, stats); } void PacketBuffer::DiscardPacketsWithPayloadType(uint8_t payload_type, StatisticsCalculator* stats) { buffer_.remove_if([payload_type, stats](const Packet& p) { if (p.payload_type != payload_type) { return false; } LogPacketDiscarded(p.priority.codec_level, stats); return true; }); } size_t PacketBuffer::NumPacketsInBuffer() const { return buffer_.size(); } size_t PacketBuffer::NumSamplesInBuffer(size_t last_decoded_length) const { size_t num_samples = 0; size_t last_duration = last_decoded_length; for (const Packet& packet : buffer_) { if (packet.frame) { // TODO(hlundin): Verify that it's fine to count all packets and remove // this check. if (packet.priority != Packet::Priority(0, 0)) { continue; } size_t duration = packet.frame->Duration(); if (duration > 0) { last_duration = duration; // Save the most up-to-date (valid) duration. } } num_samples += last_duration; } return num_samples; } size_t PacketBuffer::GetSpanSamples(size_t last_decoded_length, size_t sample_rate, bool count_dtx_waiting_time) const { if (buffer_.size() == 0) { return 0; } size_t span = buffer_.back().timestamp - buffer_.front().timestamp; if (buffer_.back().frame && buffer_.back().frame->Duration() > 0) { size_t duration = buffer_.back().frame->Duration(); if (count_dtx_waiting_time && buffer_.back().frame->IsDtxPacket()) { size_t waiting_time_samples = rtc::dchecked_cast( buffer_.back().waiting_time->ElapsedMs() * (sample_rate / 1000)); duration = std::max(duration, waiting_time_samples); } span += duration; } else { span += last_decoded_length; } return span; } bool PacketBuffer::ContainsDtxOrCngPacket( const DecoderDatabase* decoder_database) const { RTC_DCHECK(decoder_database); for (const Packet& packet : buffer_) { if ((packet.frame && packet.frame->IsDtxPacket()) || decoder_database->IsComfortNoise(packet.payload_type)) { return true; } } return false; } } // namespace webrtc