/* * Copyright 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/video_analyzer.h" #include #include #include "absl/algorithm/container.h" #include "absl/flags/flag.h" #include "absl/flags/parse.h" #include "common_video/libyuv/include/webrtc_libyuv.h" #include "modules/rtp_rtcp/source/create_video_rtp_depacketizer.h" #include "modules/rtp_rtcp/source/rtp_packet.h" #include "rtc_base/cpu_time.h" #include "rtc_base/format_macros.h" #include "rtc_base/memory_usage.h" #include "rtc_base/task_queue_for_test.h" #include "rtc_base/task_utils/repeating_task.h" #include "system_wrappers/include/cpu_info.h" #include "test/call_test.h" #include "test/testsupport/file_utils.h" #include "test/testsupport/frame_writer.h" #include "test/testsupport/perf_test.h" #include "test/testsupport/test_artifacts.h" ABSL_FLAG(bool, save_worst_frame, false, "Enable saving a frame with the lowest PSNR to a jpeg file in the " "test_artifacts_dir"); namespace webrtc { namespace { constexpr TimeDelta kSendStatsPollingInterval = TimeDelta::Seconds(1); constexpr size_t kMaxComparisons = 10; // How often is keep alive message printed. constexpr int kKeepAliveIntervalSeconds = 30; // Interval between checking that the test is over. constexpr int kProbingIntervalMs = 500; constexpr int kKeepAliveIntervalIterations = kKeepAliveIntervalSeconds * 1000 / kProbingIntervalMs; bool IsFlexfec(int payload_type) { return payload_type == test::CallTest::kFlexfecPayloadType; } } // namespace VideoAnalyzer::VideoAnalyzer(test::LayerFilteringTransport* transport, const std::string& test_label, double avg_psnr_threshold, double avg_ssim_threshold, int duration_frames, TimeDelta test_duration, FILE* graph_data_output_file, const std::string& graph_title, uint32_t ssrc_to_analyze, uint32_t rtx_ssrc_to_analyze, size_t selected_stream, int selected_sl, int selected_tl, bool is_quick_test_enabled, Clock* clock, std::string rtp_dump_name, TaskQueueBase* task_queue) : transport_(transport), receiver_(nullptr), call_(nullptr), send_stream_(nullptr), receive_stream_(nullptr), audio_receive_stream_(nullptr), captured_frame_forwarder_(this, clock, duration_frames, test_duration), test_label_(test_label), graph_data_output_file_(graph_data_output_file), graph_title_(graph_title), ssrc_to_analyze_(ssrc_to_analyze), rtx_ssrc_to_analyze_(rtx_ssrc_to_analyze), selected_stream_(selected_stream), selected_sl_(selected_sl), selected_tl_(selected_tl), mean_decode_time_ms_(0.0), freeze_count_(0), total_freezes_duration_ms_(0), total_frames_duration_ms_(0), sum_squared_frame_durations_(0), decode_frame_rate_(0), render_frame_rate_(0), last_fec_bytes_(0), frames_to_process_(duration_frames), test_end_(clock->CurrentTime() + test_duration), frames_recorded_(0), frames_processed_(0), captured_frames_(0), dropped_frames_(0), dropped_frames_before_first_encode_(0), dropped_frames_before_rendering_(0), last_render_time_(0), last_render_delta_ms_(0), last_unfreeze_time_ms_(0), rtp_timestamp_delta_(0), cpu_time_(0), wallclock_time_(0), avg_psnr_threshold_(avg_psnr_threshold), avg_ssim_threshold_(avg_ssim_threshold), is_quick_test_enabled_(is_quick_test_enabled), quit_(false), done_(true, false), vp8_depacketizer_(CreateVideoRtpDepacketizer(kVideoCodecVP8)), vp9_depacketizer_(CreateVideoRtpDepacketizer(kVideoCodecVP9)), clock_(clock), start_ms_(clock->TimeInMilliseconds()), task_queue_(task_queue) { // Create thread pool for CPU-expensive PSNR/SSIM calculations. // Try to use about as many threads as cores, but leave kMinCoresLeft alone, // so that we don't accidentally starve "real" worker threads (codec etc). // Also, don't allocate more than kMaxComparisonThreads, even if there are // spare cores. uint32_t num_cores = CpuInfo::DetectNumberOfCores(); RTC_DCHECK_GE(num_cores, 1); static const uint32_t kMinCoresLeft = 4; static const uint32_t kMaxComparisonThreads = 8; if (num_cores <= kMinCoresLeft) { num_cores = 1; } else { num_cores -= kMinCoresLeft; num_cores = std::min(num_cores, kMaxComparisonThreads); } for (uint32_t i = 0; i < num_cores; ++i) { rtc::PlatformThread* thread = new rtc::PlatformThread(&FrameComparisonThread, this, "Analyzer"); thread->Start(); comparison_thread_pool_.push_back(thread); } if (!rtp_dump_name.empty()) { fprintf(stdout, "Writing rtp dump to %s\n", rtp_dump_name.c_str()); rtp_file_writer_.reset(test::RtpFileWriter::Create( test::RtpFileWriter::kRtpDump, rtp_dump_name)); } } VideoAnalyzer::~VideoAnalyzer() { { MutexLock lock(&comparison_lock_); quit_ = true; } for (rtc::PlatformThread* thread : comparison_thread_pool_) { thread->Stop(); delete thread; } } void VideoAnalyzer::SetReceiver(PacketReceiver* receiver) { receiver_ = receiver; } void VideoAnalyzer::SetSource( rtc::VideoSourceInterface* video_source, bool respect_sink_wants) { if (respect_sink_wants) captured_frame_forwarder_.SetSource(video_source); rtc::VideoSinkWants wants; video_source->AddOrUpdateSink(InputInterface(), wants); } void VideoAnalyzer::SetCall(Call* call) { MutexLock lock(&lock_); RTC_DCHECK(!call_); call_ = call; } void VideoAnalyzer::SetSendStream(VideoSendStream* stream) { MutexLock lock(&lock_); RTC_DCHECK(!send_stream_); send_stream_ = stream; } void VideoAnalyzer::SetReceiveStream(VideoReceiveStream* stream) { MutexLock lock(&lock_); RTC_DCHECK(!receive_stream_); receive_stream_ = stream; } void VideoAnalyzer::SetAudioReceiveStream(AudioReceiveStream* recv_stream) { MutexLock lock(&lock_); RTC_CHECK(!audio_receive_stream_); audio_receive_stream_ = recv_stream; } rtc::VideoSinkInterface* VideoAnalyzer::InputInterface() { return &captured_frame_forwarder_; } rtc::VideoSourceInterface* VideoAnalyzer::OutputInterface() { return &captured_frame_forwarder_; } PacketReceiver::DeliveryStatus VideoAnalyzer::DeliverPacket( MediaType media_type, rtc::CopyOnWriteBuffer packet, int64_t packet_time_us) { // Ignore timestamps of RTCP packets. They're not synchronized with // RTP packet timestamps and so they would confuse wrap_handler_. if (RtpHeaderParser::IsRtcp(packet.cdata(), packet.size())) { return receiver_->DeliverPacket(media_type, std::move(packet), packet_time_us); } if (rtp_file_writer_) { test::RtpPacket p; memcpy(p.data, packet.cdata(), packet.size()); p.length = packet.size(); p.original_length = packet.size(); p.time_ms = clock_->TimeInMilliseconds() - start_ms_; rtp_file_writer_->WritePacket(&p); } RtpPacket rtp_packet; rtp_packet.Parse(packet); if (!IsFlexfec(rtp_packet.PayloadType()) && (rtp_packet.Ssrc() == ssrc_to_analyze_ || rtp_packet.Ssrc() == rtx_ssrc_to_analyze_)) { // Ignore FlexFEC timestamps, to avoid collisions with media timestamps. // (FlexFEC and media are sent on different SSRCs, which have different // timestamps spaces.) // Also ignore packets from wrong SSRC, but include retransmits. MutexLock lock(&lock_); int64_t timestamp = wrap_handler_.Unwrap(rtp_packet.Timestamp() - rtp_timestamp_delta_); recv_times_[timestamp] = clock_->CurrentNtpInMilliseconds(); } return receiver_->DeliverPacket(media_type, std::move(packet), packet_time_us); } void VideoAnalyzer::PreEncodeOnFrame(const VideoFrame& video_frame) { MutexLock lock(&lock_); if (!first_encoded_timestamp_) { while (frames_.front().timestamp() != video_frame.timestamp()) { ++dropped_frames_before_first_encode_; frames_.pop_front(); RTC_CHECK(!frames_.empty()); } first_encoded_timestamp_ = video_frame.timestamp(); } } void VideoAnalyzer::PostEncodeOnFrame(size_t stream_id, uint32_t timestamp) { MutexLock lock(&lock_); if (!first_sent_timestamp_ && stream_id == selected_stream_) { first_sent_timestamp_ = timestamp; } } bool VideoAnalyzer::SendRtp(const uint8_t* packet, size_t length, const PacketOptions& options) { RtpPacket rtp_packet; rtp_packet.Parse(packet, length); int64_t current_time = clock_->CurrentNtpInMilliseconds(); bool result = transport_->SendRtp(packet, length, options); { MutexLock lock(&lock_); if (rtp_timestamp_delta_ == 0 && rtp_packet.Ssrc() == ssrc_to_analyze_) { RTC_CHECK(static_cast(first_sent_timestamp_)); rtp_timestamp_delta_ = rtp_packet.Timestamp() - *first_sent_timestamp_; } if (!IsFlexfec(rtp_packet.PayloadType()) && rtp_packet.Ssrc() == ssrc_to_analyze_) { // Ignore FlexFEC timestamps, to avoid collisions with media timestamps. // (FlexFEC and media are sent on different SSRCs, which have different // timestamps spaces.) // Also ignore packets from wrong SSRC and retransmits. int64_t timestamp = wrap_handler_.Unwrap(rtp_packet.Timestamp() - rtp_timestamp_delta_); send_times_[timestamp] = current_time; if (IsInSelectedSpatialAndTemporalLayer(rtp_packet)) { encoded_frame_sizes_[timestamp] += rtp_packet.payload_size(); } } } return result; } bool VideoAnalyzer::SendRtcp(const uint8_t* packet, size_t length) { return transport_->SendRtcp(packet, length); } void VideoAnalyzer::OnFrame(const VideoFrame& video_frame) { int64_t render_time_ms = clock_->CurrentNtpInMilliseconds(); MutexLock lock(&lock_); StartExcludingCpuThreadTime(); int64_t send_timestamp = wrap_handler_.Unwrap(video_frame.timestamp() - rtp_timestamp_delta_); while (wrap_handler_.Unwrap(frames_.front().timestamp()) < send_timestamp) { if (!last_rendered_frame_) { // No previous frame rendered, this one was dropped after sending but // before rendering. ++dropped_frames_before_rendering_; } else { AddFrameComparison(frames_.front(), *last_rendered_frame_, true, render_time_ms); } frames_.pop_front(); RTC_DCHECK(!frames_.empty()); } VideoFrame reference_frame = frames_.front(); frames_.pop_front(); int64_t reference_timestamp = wrap_handler_.Unwrap(reference_frame.timestamp()); if (send_timestamp == reference_timestamp - 1) { // TODO(ivica): Make this work for > 2 streams. // Look at RTPSender::BuildRTPHeader. ++send_timestamp; } ASSERT_EQ(reference_timestamp, send_timestamp); AddFrameComparison(reference_frame, video_frame, false, render_time_ms); last_rendered_frame_ = video_frame; StopExcludingCpuThreadTime(); } void VideoAnalyzer::Wait() { // Frame comparisons can be very expensive. Wait for test to be done, but // at time-out check if frames_processed is going up. If so, give it more // time, otherwise fail. Hopefully this will reduce test flakiness. RepeatingTaskHandle stats_polling_task = RepeatingTaskHandle::DelayedStart( task_queue_, kSendStatsPollingInterval, [this] { PollStats(); return kSendStatsPollingInterval; }); int last_frames_processed = -1; int last_frames_captured = -1; int iteration = 0; while (!done_.Wait(kProbingIntervalMs)) { int frames_processed; int frames_captured; { MutexLock lock(&comparison_lock_); frames_processed = frames_processed_; frames_captured = captured_frames_; } // Print some output so test infrastructure won't think we've crashed. const char* kKeepAliveMessages[3] = { "Uh, I'm-I'm not quite dead, sir.", "Uh, I-I think uh, I could pull through, sir.", "Actually, I think I'm all right to come with you--"}; if (++iteration % kKeepAliveIntervalIterations == 0) { printf("- %s\n", kKeepAliveMessages[iteration % 3]); } if (last_frames_processed == -1) { last_frames_processed = frames_processed; last_frames_captured = frames_captured; continue; } if (frames_processed == last_frames_processed && last_frames_captured == frames_captured && clock_->CurrentTime() > test_end_) { done_.Set(); break; } last_frames_processed = frames_processed; last_frames_captured = frames_captured; } if (iteration > 0) printf("- Farewell, sweet Concorde!\n"); SendTask(RTC_FROM_HERE, task_queue_, [&] { stats_polling_task.Stop(); }); PrintResults(); if (graph_data_output_file_) PrintSamplesToFile(); } void VideoAnalyzer::StartMeasuringCpuProcessTime() { MutexLock lock(&cpu_measurement_lock_); cpu_time_ -= rtc::GetProcessCpuTimeNanos(); wallclock_time_ -= rtc::SystemTimeNanos(); } void VideoAnalyzer::StopMeasuringCpuProcessTime() { MutexLock lock(&cpu_measurement_lock_); cpu_time_ += rtc::GetProcessCpuTimeNanos(); wallclock_time_ += rtc::SystemTimeNanos(); } void VideoAnalyzer::StartExcludingCpuThreadTime() { MutexLock lock(&cpu_measurement_lock_); cpu_time_ += rtc::GetThreadCpuTimeNanos(); } void VideoAnalyzer::StopExcludingCpuThreadTime() { MutexLock lock(&cpu_measurement_lock_); cpu_time_ -= rtc::GetThreadCpuTimeNanos(); } double VideoAnalyzer::GetCpuUsagePercent() { MutexLock lock(&cpu_measurement_lock_); return static_cast(cpu_time_) / wallclock_time_ * 100.0; } bool VideoAnalyzer::IsInSelectedSpatialAndTemporalLayer( const RtpPacket& rtp_packet) { if (rtp_packet.PayloadType() == test::CallTest::kPayloadTypeVP8) { auto parsed_payload = vp8_depacketizer_->Parse(rtp_packet.PayloadBuffer()); RTC_DCHECK(parsed_payload); const auto& vp8_header = absl::get( parsed_payload->video_header.video_type_header); int temporal_idx = vp8_header.temporalIdx; return selected_tl_ < 0 || temporal_idx == kNoTemporalIdx || temporal_idx <= selected_tl_; } if (rtp_packet.PayloadType() == test::CallTest::kPayloadTypeVP9) { auto parsed_payload = vp9_depacketizer_->Parse(rtp_packet.PayloadBuffer()); RTC_DCHECK(parsed_payload); const auto& vp9_header = absl::get( parsed_payload->video_header.video_type_header); int temporal_idx = vp9_header.temporal_idx; int spatial_idx = vp9_header.spatial_idx; return (selected_tl_ < 0 || temporal_idx == kNoTemporalIdx || temporal_idx <= selected_tl_) && (selected_sl_ < 0 || spatial_idx == kNoSpatialIdx || spatial_idx <= selected_sl_); } return true; } void VideoAnalyzer::PollStats() { // Do not grab |comparison_lock_|, before |GetStats()| completes. // Otherwise a deadlock may occur: // 1) |comparison_lock_| is acquired after |lock_| // 2) |lock_| is acquired after internal pacer lock in SendRtp() // 3) internal pacer lock is acquired by GetStats(). Call::Stats call_stats = call_->GetStats(); MutexLock lock(&comparison_lock_); send_bandwidth_bps_.AddSample(call_stats.send_bandwidth_bps); VideoSendStream::Stats send_stats = send_stream_->GetStats(); // It's not certain that we yet have estimates for any of these stats. // Check that they are positive before mixing them in. if (send_stats.encode_frame_rate > 0) encode_frame_rate_.AddSample(send_stats.encode_frame_rate); if (send_stats.avg_encode_time_ms > 0) encode_time_ms_.AddSample(send_stats.avg_encode_time_ms); if (send_stats.encode_usage_percent > 0) encode_usage_percent_.AddSample(send_stats.encode_usage_percent); if (send_stats.media_bitrate_bps > 0) media_bitrate_bps_.AddSample(send_stats.media_bitrate_bps); size_t fec_bytes = 0; for (const auto& kv : send_stats.substreams) { fec_bytes += kv.second.rtp_stats.fec.payload_bytes + kv.second.rtp_stats.fec.padding_bytes; } fec_bitrate_bps_.AddSample((fec_bytes - last_fec_bytes_) * 8); last_fec_bytes_ = fec_bytes; if (receive_stream_ != nullptr) { VideoReceiveStream::Stats receive_stats = receive_stream_->GetStats(); // |total_decode_time_ms| gives a good estimate of the mean decode time, // |decode_ms| is used to keep track of the standard deviation. if (receive_stats.frames_decoded > 0) mean_decode_time_ms_ = static_cast(receive_stats.total_decode_time_ms) / receive_stats.frames_decoded; if (receive_stats.decode_ms > 0) decode_time_ms_.AddSample(receive_stats.decode_ms); if (receive_stats.max_decode_ms > 0) decode_time_max_ms_.AddSample(receive_stats.max_decode_ms); if (receive_stats.width > 0 && receive_stats.height > 0) { pixels_.AddSample(receive_stats.width * receive_stats.height); } // |frames_decoded| and |frames_rendered| are used because they are more // accurate than |decode_frame_rate| and |render_frame_rate|. // The latter two are calculated on a momentary basis. const double total_frames_duration_sec_double = static_cast(receive_stats.total_frames_duration_ms) / 1000.0; if (total_frames_duration_sec_double > 0) { decode_frame_rate_ = static_cast(receive_stats.frames_decoded) / total_frames_duration_sec_double; render_frame_rate_ = static_cast(receive_stats.frames_rendered) / total_frames_duration_sec_double; } // Freeze metrics. freeze_count_ = receive_stats.freeze_count; total_freezes_duration_ms_ = receive_stats.total_freezes_duration_ms; total_frames_duration_ms_ = receive_stats.total_frames_duration_ms; sum_squared_frame_durations_ = receive_stats.sum_squared_frame_durations; } if (audio_receive_stream_ != nullptr) { AudioReceiveStream::Stats receive_stats = audio_receive_stream_->GetStats(); audio_expand_rate_.AddSample(receive_stats.expand_rate); audio_accelerate_rate_.AddSample(receive_stats.accelerate_rate); audio_jitter_buffer_ms_.AddSample(receive_stats.jitter_buffer_ms); } memory_usage_.AddSample(rtc::GetProcessResidentSizeBytes()); } void VideoAnalyzer::FrameComparisonThread(void* obj) { VideoAnalyzer* analyzer = static_cast(obj); while (analyzer->CompareFrames()) { } } bool VideoAnalyzer::CompareFrames() { if (AllFramesRecorded()) return false; FrameComparison comparison; if (!PopComparison(&comparison)) { // Wait until new comparison task is available, or test is done. // If done, wake up remaining threads waiting. comparison_available_event_.Wait(1000); if (AllFramesRecorded()) { comparison_available_event_.Set(); return false; } return true; // Try again. } StartExcludingCpuThreadTime(); PerformFrameComparison(comparison); StopExcludingCpuThreadTime(); if (FrameProcessed()) { done_.Set(); comparison_available_event_.Set(); return false; } return true; } bool VideoAnalyzer::PopComparison(VideoAnalyzer::FrameComparison* comparison) { MutexLock lock(&comparison_lock_); // If AllFramesRecorded() is true, it means we have already popped // frames_to_process_ frames from comparisons_, so there is no more work // for this thread to be done. frames_processed_ might still be lower if // all comparisons are not done, but those frames are currently being // worked on by other threads. if (comparisons_.empty() || AllFramesRecordedLocked()) return false; *comparison = comparisons_.front(); comparisons_.pop_front(); FrameRecorded(); return true; } void VideoAnalyzer::FrameRecorded() { ++frames_recorded_; } bool VideoAnalyzer::AllFramesRecorded() { MutexLock lock(&comparison_lock_); return AllFramesRecordedLocked(); } bool VideoAnalyzer::AllFramesRecordedLocked() { RTC_DCHECK(frames_recorded_ <= frames_to_process_); return frames_recorded_ == frames_to_process_ || (clock_->CurrentTime() > test_end_ && comparisons_.empty()) || quit_; } bool VideoAnalyzer::FrameProcessed() { MutexLock lock(&comparison_lock_); ++frames_processed_; assert(frames_processed_ <= frames_to_process_); return frames_processed_ == frames_to_process_ || (clock_->CurrentTime() > test_end_ && comparisons_.empty()); } void VideoAnalyzer::PrintResults() { using ::webrtc::test::ImproveDirection; StopMeasuringCpuProcessTime(); int dropped_frames_diff; { MutexLock lock(&lock_); dropped_frames_diff = dropped_frames_before_first_encode_ + dropped_frames_before_rendering_ + frames_.size(); } MutexLock lock(&comparison_lock_); PrintResult("psnr", psnr_, "dB", ImproveDirection::kBiggerIsBetter); PrintResult("ssim", ssim_, "unitless", ImproveDirection::kBiggerIsBetter); PrintResult("sender_time", sender_time_, "ms", ImproveDirection::kSmallerIsBetter); PrintResult("receiver_time", receiver_time_, "ms", ImproveDirection::kSmallerIsBetter); PrintResult("network_time", network_time_, "ms", ImproveDirection::kSmallerIsBetter); PrintResult("total_delay_incl_network", end_to_end_, "ms", ImproveDirection::kSmallerIsBetter); PrintResult("time_between_rendered_frames", rendered_delta_, "ms", ImproveDirection::kSmallerIsBetter); PrintResult("encode_frame_rate", encode_frame_rate_, "fps", ImproveDirection::kBiggerIsBetter); PrintResult("encode_time", encode_time_ms_, "ms", ImproveDirection::kSmallerIsBetter); PrintResult("media_bitrate", media_bitrate_bps_, "bps", ImproveDirection::kNone); PrintResult("fec_bitrate", fec_bitrate_bps_, "bps", ImproveDirection::kNone); PrintResult("send_bandwidth", send_bandwidth_bps_, "bps", ImproveDirection::kNone); PrintResult("pixels_per_frame", pixels_, "count", ImproveDirection::kBiggerIsBetter); test::PrintResult("decode_frame_rate", "", test_label_.c_str(), decode_frame_rate_, "fps", false, ImproveDirection::kBiggerIsBetter); test::PrintResult("render_frame_rate", "", test_label_.c_str(), render_frame_rate_, "fps", false, ImproveDirection::kBiggerIsBetter); // Record the time from the last freeze until the last rendered frame to // ensure we cover the full timespan of the session. Otherwise the metric // would penalize an early freeze followed by no freezes until the end. time_between_freezes_.AddSample(last_render_time_ - last_unfreeze_time_ms_); // Freeze metrics. PrintResult("time_between_freezes", time_between_freezes_, "ms", ImproveDirection::kBiggerIsBetter); const double freeze_count_double = static_cast(freeze_count_); const double total_freezes_duration_ms_double = static_cast(total_freezes_duration_ms_); const double total_frames_duration_ms_double = static_cast(total_frames_duration_ms_); if (total_frames_duration_ms_double > 0) { test::PrintResult( "freeze_duration_ratio", "", test_label_.c_str(), total_freezes_duration_ms_double / total_frames_duration_ms_double, "unitless", false, ImproveDirection::kSmallerIsBetter); RTC_DCHECK_LE(total_freezes_duration_ms_double, total_frames_duration_ms_double); constexpr double ms_per_minute = 60 * 1000; const double total_frames_duration_min = total_frames_duration_ms_double / ms_per_minute; if (total_frames_duration_min > 0) { test::PrintResult("freeze_count_per_minute", "", test_label_.c_str(), freeze_count_double / total_frames_duration_min, "unitless", false, ImproveDirection::kSmallerIsBetter); } } test::PrintResult("freeze_duration_average", "", test_label_.c_str(), freeze_count_double > 0 ? total_freezes_duration_ms_double / freeze_count_double : 0, "ms", false, ImproveDirection::kSmallerIsBetter); if (1000 * sum_squared_frame_durations_ > 0) { test::PrintResult( "harmonic_frame_rate", "", test_label_.c_str(), total_frames_duration_ms_double / (1000 * sum_squared_frame_durations_), "fps", false, ImproveDirection::kBiggerIsBetter); } if (worst_frame_) { test::PrintResult("min_psnr", "", test_label_.c_str(), worst_frame_->psnr, "dB", false, ImproveDirection::kBiggerIsBetter); } if (receive_stream_ != nullptr) { PrintResultWithExternalMean("decode_time", mean_decode_time_ms_, decode_time_ms_, "ms", ImproveDirection::kSmallerIsBetter); } dropped_frames_ += dropped_frames_diff; test::PrintResult("dropped_frames", "", test_label_.c_str(), dropped_frames_, "count", false, ImproveDirection::kSmallerIsBetter); test::PrintResult("cpu_usage", "", test_label_.c_str(), GetCpuUsagePercent(), "%", false, ImproveDirection::kSmallerIsBetter); #if defined(WEBRTC_WIN) // On Linux and Mac in Resident Set some unused pages may be counted. // Therefore this metric will depend on order in which tests are run and // will be flaky. PrintResult("memory_usage", memory_usage_, "sizeInBytes", ImproveDirection::kSmallerIsBetter); #endif // Saving only the worst frame for manual analysis. Intention here is to // only detect video corruptions and not to track picture quality. Thus, // jpeg is used here. if (absl::GetFlag(FLAGS_save_worst_frame) && worst_frame_) { std::string output_dir; test::GetTestArtifactsDir(&output_dir); std::string output_path = test::JoinFilename(output_dir, test_label_ + ".jpg"); RTC_LOG(LS_INFO) << "Saving worst frame to " << output_path; test::JpegFrameWriter frame_writer(output_path); RTC_CHECK( frame_writer.WriteFrame(worst_frame_->frame, 100 /*best quality*/)); } if (audio_receive_stream_ != nullptr) { PrintResult("audio_expand_rate", audio_expand_rate_, "unitless", ImproveDirection::kSmallerIsBetter); PrintResult("audio_accelerate_rate", audio_accelerate_rate_, "unitless", ImproveDirection::kSmallerIsBetter); PrintResult("audio_jitter_buffer", audio_jitter_buffer_ms_, "ms", ImproveDirection::kNone); } // Disable quality check for quick test, as quality checks may fail // because too few samples were collected. if (!is_quick_test_enabled_) { EXPECT_GT(*psnr_.GetMean(), avg_psnr_threshold_); EXPECT_GT(*ssim_.GetMean(), avg_ssim_threshold_); } } void VideoAnalyzer::PerformFrameComparison( const VideoAnalyzer::FrameComparison& comparison) { // Perform expensive psnr and ssim calculations while not holding lock. double psnr = -1.0; double ssim = -1.0; if (comparison.reference && !comparison.dropped) { psnr = I420PSNR(&*comparison.reference, &*comparison.render); ssim = I420SSIM(&*comparison.reference, &*comparison.render); } MutexLock lock(&comparison_lock_); if (psnr >= 0.0 && (!worst_frame_ || worst_frame_->psnr > psnr)) { worst_frame_.emplace(FrameWithPsnr{psnr, *comparison.render}); } if (graph_data_output_file_) { samples_.push_back(Sample(comparison.dropped, comparison.input_time_ms, comparison.send_time_ms, comparison.recv_time_ms, comparison.render_time_ms, comparison.encoded_frame_size, psnr, ssim)); } if (psnr >= 0.0) psnr_.AddSample(psnr); if (ssim >= 0.0) ssim_.AddSample(ssim); if (comparison.dropped) { ++dropped_frames_; return; } if (last_unfreeze_time_ms_ == 0) last_unfreeze_time_ms_ = comparison.render_time_ms; if (last_render_time_ != 0) { const int64_t render_delta_ms = comparison.render_time_ms - last_render_time_; rendered_delta_.AddSample(render_delta_ms); if (last_render_delta_ms_ != 0 && render_delta_ms - last_render_delta_ms_ > 150) { time_between_freezes_.AddSample(last_render_time_ - last_unfreeze_time_ms_); last_unfreeze_time_ms_ = comparison.render_time_ms; } last_render_delta_ms_ = render_delta_ms; } last_render_time_ = comparison.render_time_ms; sender_time_.AddSample(comparison.send_time_ms - comparison.input_time_ms); if (comparison.recv_time_ms > 0) { // If recv_time_ms == 0, this frame consisted of a packets which were all // lost in the transport. Since we were able to render the frame, however, // the dropped packets were recovered by FlexFEC. The FlexFEC recovery // happens internally in Call, and we can therefore here not know which // FEC packets that protected the lost media packets. Consequently, we // were not able to record a meaningful recv_time_ms. We therefore skip // this sample. // // The reasoning above does not hold for ULPFEC and RTX, as for those // strategies the timestamp of the received packets is set to the // timestamp of the protected/retransmitted media packet. I.e., then // recv_time_ms != 0, even though the media packets were lost. receiver_time_.AddSample(comparison.render_time_ms - comparison.recv_time_ms); network_time_.AddSample(comparison.recv_time_ms - comparison.send_time_ms); } end_to_end_.AddSample(comparison.render_time_ms - comparison.input_time_ms); encoded_frame_size_.AddSample(comparison.encoded_frame_size); } void VideoAnalyzer::PrintResult( const char* result_type, Statistics stats, const char* unit, webrtc::test::ImproveDirection improve_direction) { test::PrintResultMeanAndError( result_type, "", test_label_.c_str(), stats.GetMean().value_or(0), stats.GetStandardDeviation().value_or(0), unit, false, improve_direction); } void VideoAnalyzer::PrintResultWithExternalMean( const char* result_type, double mean, Statistics stats, const char* unit, webrtc::test::ImproveDirection improve_direction) { // If the true mean is different than the sample mean, the sample variance is // too low. The sample variance given a known mean is obtained by adding the // squared error between the true mean and the sample mean. double compensated_variance = stats.Size() > 0 ? *stats.GetVariance() + pow(mean - *stats.GetMean(), 2.0) : 0.0; test::PrintResultMeanAndError(result_type, "", test_label_.c_str(), mean, std::sqrt(compensated_variance), unit, false, improve_direction); } void VideoAnalyzer::PrintSamplesToFile() { FILE* out = graph_data_output_file_; MutexLock lock(&comparison_lock_); absl::c_sort(samples_, [](const Sample& A, const Sample& B) -> bool { return A.input_time_ms < B.input_time_ms; }); fprintf(out, "%s\n", graph_title_.c_str()); fprintf(out, "%" RTC_PRIuS "\n", samples_.size()); fprintf(out, "dropped " "input_time_ms " "send_time_ms " "recv_time_ms " "render_time_ms " "encoded_frame_size " "psnr " "ssim " "encode_time_ms\n"); for (const Sample& sample : samples_) { fprintf(out, "%d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %" RTC_PRIuS " %lf %lf\n", sample.dropped, sample.input_time_ms, sample.send_time_ms, sample.recv_time_ms, sample.render_time_ms, sample.encoded_frame_size, sample.psnr, sample.ssim); } } void VideoAnalyzer::AddCapturedFrameForComparison( const VideoFrame& video_frame) { bool must_capture = false; { MutexLock lock(&comparison_lock_); must_capture = captured_frames_ < frames_to_process_; if (must_capture) { ++captured_frames_; } } if (must_capture) { MutexLock lock(&lock_); frames_.push_back(video_frame); } } void VideoAnalyzer::AddFrameComparison(const VideoFrame& reference, const VideoFrame& render, bool dropped, int64_t render_time_ms) { int64_t reference_timestamp = wrap_handler_.Unwrap(reference.timestamp()); int64_t send_time_ms = send_times_[reference_timestamp]; send_times_.erase(reference_timestamp); int64_t recv_time_ms = recv_times_[reference_timestamp]; recv_times_.erase(reference_timestamp); // TODO(ivica): Make this work for > 2 streams. auto it = encoded_frame_sizes_.find(reference_timestamp); if (it == encoded_frame_sizes_.end()) it = encoded_frame_sizes_.find(reference_timestamp - 1); size_t encoded_size = it == encoded_frame_sizes_.end() ? 0 : it->second; if (it != encoded_frame_sizes_.end()) encoded_frame_sizes_.erase(it); MutexLock lock(&comparison_lock_); if (comparisons_.size() < kMaxComparisons) { comparisons_.push_back(FrameComparison( reference, render, dropped, reference.ntp_time_ms(), send_time_ms, recv_time_ms, render_time_ms, encoded_size)); } else { comparisons_.push_back(FrameComparison(dropped, reference.ntp_time_ms(), send_time_ms, recv_time_ms, render_time_ms, encoded_size)); } comparison_available_event_.Set(); } VideoAnalyzer::FrameComparison::FrameComparison() : dropped(false), input_time_ms(0), send_time_ms(0), recv_time_ms(0), render_time_ms(0), encoded_frame_size(0) {} VideoAnalyzer::FrameComparison::FrameComparison(const VideoFrame& reference, const VideoFrame& render, bool dropped, int64_t input_time_ms, int64_t send_time_ms, int64_t recv_time_ms, int64_t render_time_ms, size_t encoded_frame_size) : reference(reference), render(render), dropped(dropped), input_time_ms(input_time_ms), send_time_ms(send_time_ms), recv_time_ms(recv_time_ms), render_time_ms(render_time_ms), encoded_frame_size(encoded_frame_size) {} VideoAnalyzer::FrameComparison::FrameComparison(bool dropped, int64_t input_time_ms, int64_t send_time_ms, int64_t recv_time_ms, int64_t render_time_ms, size_t encoded_frame_size) : dropped(dropped), input_time_ms(input_time_ms), send_time_ms(send_time_ms), recv_time_ms(recv_time_ms), render_time_ms(render_time_ms), encoded_frame_size(encoded_frame_size) {} VideoAnalyzer::Sample::Sample(int dropped, int64_t input_time_ms, int64_t send_time_ms, int64_t recv_time_ms, int64_t render_time_ms, size_t encoded_frame_size, double psnr, double ssim) : dropped(dropped), input_time_ms(input_time_ms), send_time_ms(send_time_ms), recv_time_ms(recv_time_ms), render_time_ms(render_time_ms), encoded_frame_size(encoded_frame_size), psnr(psnr), ssim(ssim) {} VideoAnalyzer::CapturedFrameForwarder::CapturedFrameForwarder( VideoAnalyzer* analyzer, Clock* clock, int frames_to_capture, TimeDelta test_duration) : analyzer_(analyzer), send_stream_input_(nullptr), video_source_(nullptr), clock_(clock), captured_frames_(0), frames_to_capture_(frames_to_capture), test_end_(clock->CurrentTime() + test_duration) {} void VideoAnalyzer::CapturedFrameForwarder::SetSource( VideoSourceInterface* video_source) { video_source_ = video_source; } void VideoAnalyzer::CapturedFrameForwarder::OnFrame( const VideoFrame& video_frame) { VideoFrame copy = video_frame; // Frames from the capturer does not have a rtp timestamp. // Create one so it can be used for comparison. RTC_DCHECK_EQ(0, video_frame.timestamp()); if (video_frame.ntp_time_ms() == 0) copy.set_ntp_time_ms(clock_->CurrentNtpInMilliseconds()); copy.set_timestamp(copy.ntp_time_ms() * 90); analyzer_->AddCapturedFrameForComparison(copy); MutexLock lock(&lock_); ++captured_frames_; if (send_stream_input_ && clock_->CurrentTime() <= test_end_ && captured_frames_ <= frames_to_capture_) { send_stream_input_->OnFrame(copy); } } void VideoAnalyzer::CapturedFrameForwarder::AddOrUpdateSink( rtc::VideoSinkInterface* sink, const rtc::VideoSinkWants& wants) { { MutexLock lock(&lock_); RTC_DCHECK(!send_stream_input_ || send_stream_input_ == sink); send_stream_input_ = sink; } if (video_source_) { video_source_->AddOrUpdateSink(this, wants); } } void VideoAnalyzer::CapturedFrameForwarder::RemoveSink( rtc::VideoSinkInterface* sink) { MutexLock lock(&lock_); RTC_DCHECK(sink == send_stream_input_); send_stream_input_ = nullptr; } } // namespace webrtc