/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Based on the WAV file format documentation at // https://ccrma.stanford.edu/courses/422/projects/WaveFormat/ and // http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html #include "common_audio/wav_header.h" #include #include #include #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/sanitizer.h" #include "rtc_base/system/arch.h" namespace webrtc { namespace { #ifndef WEBRTC_ARCH_LITTLE_ENDIAN #error "Code not working properly for big endian platforms." #endif #pragma pack(2) struct ChunkHeader { uint32_t ID; uint32_t Size; }; static_assert(sizeof(ChunkHeader) == 8, "ChunkHeader size"); #pragma pack(2) struct RiffHeader { ChunkHeader header; uint32_t Format; }; static_assert(sizeof(RiffHeader) == sizeof(ChunkHeader) + 4, "RiffHeader size"); // We can't nest this definition in WavHeader, because VS2013 gives an error // on sizeof(WavHeader::fmt): "error C2070: 'unknown': illegal sizeof operand". #pragma pack(2) struct FmtPcmSubchunk { ChunkHeader header; uint16_t AudioFormat; uint16_t NumChannels; uint32_t SampleRate; uint32_t ByteRate; uint16_t BlockAlign; uint16_t BitsPerSample; }; static_assert(sizeof(FmtPcmSubchunk) == 24, "FmtPcmSubchunk size"); const uint32_t kFmtPcmSubchunkSize = sizeof(FmtPcmSubchunk) - sizeof(ChunkHeader); // Pack struct to avoid additional padding bytes. #pragma pack(2) struct FmtIeeeFloatSubchunk { ChunkHeader header; uint16_t AudioFormat; uint16_t NumChannels; uint32_t SampleRate; uint32_t ByteRate; uint16_t BlockAlign; uint16_t BitsPerSample; uint16_t ExtensionSize; }; static_assert(sizeof(FmtIeeeFloatSubchunk) == 26, "FmtIeeeFloatSubchunk size"); const uint32_t kFmtIeeeFloatSubchunkSize = sizeof(FmtIeeeFloatSubchunk) - sizeof(ChunkHeader); // Simple PCM wav header. It does not include chunks that are not essential to // read audio samples. #pragma pack(2) struct WavHeaderPcm { WavHeaderPcm(const WavHeaderPcm&) = default; WavHeaderPcm& operator=(const WavHeaderPcm&) = default; RiffHeader riff; FmtPcmSubchunk fmt; struct { ChunkHeader header; } data; }; static_assert(sizeof(WavHeaderPcm) == kPcmWavHeaderSize, "no padding in header"); // IEEE Float Wav header, includes extra chunks necessary for proper non-PCM // WAV implementation. #pragma pack(2) struct WavHeaderIeeeFloat { WavHeaderIeeeFloat(const WavHeaderIeeeFloat&) = default; WavHeaderIeeeFloat& operator=(const WavHeaderIeeeFloat&) = default; RiffHeader riff; FmtIeeeFloatSubchunk fmt; struct { ChunkHeader header; uint32_t SampleLength; } fact; struct { ChunkHeader header; } data; }; static_assert(sizeof(WavHeaderIeeeFloat) == kIeeeFloatWavHeaderSize, "no padding in header"); uint32_t PackFourCC(char a, char b, char c, char d) { uint32_t packed_value = static_cast(a) | static_cast(b) << 8 | static_cast(c) << 16 | static_cast(d) << 24; return packed_value; } std::string ReadFourCC(uint32_t x) { return std::string(reinterpret_cast(&x), 4); } uint16_t MapWavFormatToHeaderField(WavFormat format) { switch (format) { case WavFormat::kWavFormatPcm: return 1; case WavFormat::kWavFormatIeeeFloat: return 3; case WavFormat::kWavFormatALaw: return 6; case WavFormat::kWavFormatMuLaw: return 7; } RTC_CHECK_NOTREACHED(); } WavFormat MapHeaderFieldToWavFormat(uint16_t format_header_value) { if (format_header_value == 1) { return WavFormat::kWavFormatPcm; } if (format_header_value == 3) { return WavFormat::kWavFormatIeeeFloat; } RTC_CHECK(false) << "Unsupported WAV format"; } uint32_t RiffChunkSize(size_t bytes_in_payload, size_t header_size) { return static_cast(bytes_in_payload + header_size - sizeof(ChunkHeader)); } uint32_t ByteRate(size_t num_channels, int sample_rate, size_t bytes_per_sample) { return static_cast(num_channels * sample_rate * bytes_per_sample); } uint16_t BlockAlign(size_t num_channels, size_t bytes_per_sample) { return static_cast(num_channels * bytes_per_sample); } // Finds a chunk having the sought ID. If found, then |readable| points to the // first byte of the sought chunk data. If not found, the end of the file is // reached. bool FindWaveChunk(ChunkHeader* chunk_header, WavHeaderReader* readable, const std::string sought_chunk_id) { RTC_DCHECK_EQ(sought_chunk_id.size(), 4); while (true) { if (readable->Read(chunk_header, sizeof(*chunk_header)) != sizeof(*chunk_header)) return false; // EOF. if (ReadFourCC(chunk_header->ID) == sought_chunk_id) return true; // Sought chunk found. // Ignore current chunk by skipping its payload. if (!readable->SeekForward(chunk_header->Size)) return false; // EOF or error. } } bool ReadFmtChunkData(FmtPcmSubchunk* fmt_subchunk, WavHeaderReader* readable) { // Reads "fmt " chunk payload. if (readable->Read(&(fmt_subchunk->AudioFormat), kFmtPcmSubchunkSize) != kFmtPcmSubchunkSize) return false; const uint32_t fmt_size = fmt_subchunk->header.Size; if (fmt_size != kFmtPcmSubchunkSize) { // There is an optional two-byte extension field permitted to be present // with PCM, but which must be zero. int16_t ext_size; if (kFmtPcmSubchunkSize + sizeof(ext_size) != fmt_size) return false; if (readable->Read(&ext_size, sizeof(ext_size)) != sizeof(ext_size)) return false; if (ext_size != 0) return false; } return true; } void WritePcmWavHeader(size_t num_channels, int sample_rate, size_t bytes_per_sample, size_t num_samples, uint8_t* buf, size_t* header_size) { RTC_CHECK(buf); RTC_CHECK(header_size); *header_size = kPcmWavHeaderSize; auto header = rtc::MsanUninitialized({}); const size_t bytes_in_payload = bytes_per_sample * num_samples; header.riff.header.ID = PackFourCC('R', 'I', 'F', 'F'); header.riff.header.Size = RiffChunkSize(bytes_in_payload, *header_size); header.riff.Format = PackFourCC('W', 'A', 'V', 'E'); header.fmt.header.ID = PackFourCC('f', 'm', 't', ' '); header.fmt.header.Size = kFmtPcmSubchunkSize; header.fmt.AudioFormat = MapWavFormatToHeaderField(WavFormat::kWavFormatPcm); header.fmt.NumChannels = static_cast(num_channels); header.fmt.SampleRate = sample_rate; header.fmt.ByteRate = ByteRate(num_channels, sample_rate, bytes_per_sample); header.fmt.BlockAlign = BlockAlign(num_channels, bytes_per_sample); header.fmt.BitsPerSample = static_cast(8 * bytes_per_sample); header.data.header.ID = PackFourCC('d', 'a', 't', 'a'); header.data.header.Size = static_cast(bytes_in_payload); // Do an extra copy rather than writing everything to buf directly, since buf // might not be correctly aligned. memcpy(buf, &header, *header_size); } void WriteIeeeFloatWavHeader(size_t num_channels, int sample_rate, size_t bytes_per_sample, size_t num_samples, uint8_t* buf, size_t* header_size) { RTC_CHECK(buf); RTC_CHECK(header_size); *header_size = kIeeeFloatWavHeaderSize; auto header = rtc::MsanUninitialized({}); const size_t bytes_in_payload = bytes_per_sample * num_samples; header.riff.header.ID = PackFourCC('R', 'I', 'F', 'F'); header.riff.header.Size = RiffChunkSize(bytes_in_payload, *header_size); header.riff.Format = PackFourCC('W', 'A', 'V', 'E'); header.fmt.header.ID = PackFourCC('f', 'm', 't', ' '); header.fmt.header.Size = kFmtIeeeFloatSubchunkSize; header.fmt.AudioFormat = MapWavFormatToHeaderField(WavFormat::kWavFormatIeeeFloat); header.fmt.NumChannels = static_cast(num_channels); header.fmt.SampleRate = sample_rate; header.fmt.ByteRate = ByteRate(num_channels, sample_rate, bytes_per_sample); header.fmt.BlockAlign = BlockAlign(num_channels, bytes_per_sample); header.fmt.BitsPerSample = static_cast(8 * bytes_per_sample); header.fmt.ExtensionSize = 0; header.fact.header.ID = PackFourCC('f', 'a', 'c', 't'); header.fact.header.Size = 4; header.fact.SampleLength = static_cast(num_channels * num_samples); header.data.header.ID = PackFourCC('d', 'a', 't', 'a'); header.data.header.Size = static_cast(bytes_in_payload); // Do an extra copy rather than writing everything to buf directly, since buf // might not be correctly aligned. memcpy(buf, &header, *header_size); } // Returns the number of bytes per sample for the format. size_t GetFormatBytesPerSample(WavFormat format) { switch (format) { case WavFormat::kWavFormatPcm: // Other values may be OK, but for now we're conservative. return 2; case WavFormat::kWavFormatALaw: case WavFormat::kWavFormatMuLaw: return 1; case WavFormat::kWavFormatIeeeFloat: return 4; } RTC_CHECK_NOTREACHED(); } bool CheckWavParameters(size_t num_channels, int sample_rate, WavFormat format, size_t bytes_per_sample, size_t num_samples) { // num_channels, sample_rate, and bytes_per_sample must be positive, must fit // in their respective fields, and their product must fit in the 32-bit // ByteRate field. if (num_channels == 0 || sample_rate <= 0 || bytes_per_sample == 0) return false; if (static_cast(sample_rate) > std::numeric_limits::max()) return false; if (num_channels > std::numeric_limits::max()) return false; if (static_cast(bytes_per_sample) * 8 > std::numeric_limits::max()) return false; if (static_cast(sample_rate) * num_channels * bytes_per_sample > std::numeric_limits::max()) return false; // format and bytes_per_sample must agree. switch (format) { case WavFormat::kWavFormatPcm: // Other values may be OK, but for now we're conservative: if (bytes_per_sample != 1 && bytes_per_sample != 2) return false; break; case WavFormat::kWavFormatALaw: case WavFormat::kWavFormatMuLaw: if (bytes_per_sample != 1) return false; break; case WavFormat::kWavFormatIeeeFloat: if (bytes_per_sample != 4) return false; break; default: return false; } // The number of bytes in the file, not counting the first ChunkHeader, must // be less than 2^32; otherwise, the ChunkSize field overflows. const size_t header_size = kPcmWavHeaderSize - sizeof(ChunkHeader); const size_t max_samples = (std::numeric_limits::max() - header_size) / bytes_per_sample; if (num_samples > max_samples) return false; // Each channel must have the same number of samples. if (num_samples % num_channels != 0) return false; return true; } } // namespace bool CheckWavParameters(size_t num_channels, int sample_rate, WavFormat format, size_t num_samples) { return CheckWavParameters(num_channels, sample_rate, format, GetFormatBytesPerSample(format), num_samples); } void WriteWavHeader(size_t num_channels, int sample_rate, WavFormat format, size_t num_samples, uint8_t* buf, size_t* header_size) { RTC_CHECK(buf); RTC_CHECK(header_size); const size_t bytes_per_sample = GetFormatBytesPerSample(format); RTC_CHECK(CheckWavParameters(num_channels, sample_rate, format, bytes_per_sample, num_samples)); if (format == WavFormat::kWavFormatPcm) { WritePcmWavHeader(num_channels, sample_rate, bytes_per_sample, num_samples, buf, header_size); } else { RTC_CHECK_EQ(format, WavFormat::kWavFormatIeeeFloat); WriteIeeeFloatWavHeader(num_channels, sample_rate, bytes_per_sample, num_samples, buf, header_size); } } bool ReadWavHeader(WavHeaderReader* readable, size_t* num_channels, int* sample_rate, WavFormat* format, size_t* bytes_per_sample, size_t* num_samples, int64_t* data_start_pos) { // Read using the PCM header, even though it might be float Wav file auto header = rtc::MsanUninitialized({}); // Read RIFF chunk. if (readable->Read(&header.riff, sizeof(header.riff)) != sizeof(header.riff)) return false; if (ReadFourCC(header.riff.header.ID) != "RIFF") return false; if (ReadFourCC(header.riff.Format) != "WAVE") return false; // Find "fmt " and "data" chunks. While the official Wave file specification // does not put requirements on the chunks order, it is uncommon to find the // "data" chunk before the "fmt " one. The code below fails if this is not the // case. if (!FindWaveChunk(&header.fmt.header, readable, "fmt ")) { RTC_LOG(LS_ERROR) << "Cannot find 'fmt ' chunk."; return false; } if (!ReadFmtChunkData(&header.fmt, readable)) { RTC_LOG(LS_ERROR) << "Cannot read 'fmt ' chunk."; return false; } if (!FindWaveChunk(&header.data.header, readable, "data")) { RTC_LOG(LS_ERROR) << "Cannot find 'data' chunk."; return false; } // Parse needed fields. *format = MapHeaderFieldToWavFormat(header.fmt.AudioFormat); *num_channels = header.fmt.NumChannels; *sample_rate = header.fmt.SampleRate; *bytes_per_sample = header.fmt.BitsPerSample / 8; const size_t bytes_in_payload = header.data.header.Size; if (*bytes_per_sample == 0) return false; *num_samples = bytes_in_payload / *bytes_per_sample; const size_t header_size = *format == WavFormat::kWavFormatPcm ? kPcmWavHeaderSize : kIeeeFloatWavHeaderSize; if (header.riff.header.Size < RiffChunkSize(bytes_in_payload, header_size)) return false; if (header.fmt.ByteRate != ByteRate(*num_channels, *sample_rate, *bytes_per_sample)) return false; if (header.fmt.BlockAlign != BlockAlign(*num_channels, *bytes_per_sample)) return false; if (!CheckWavParameters(*num_channels, *sample_rate, *format, *bytes_per_sample, *num_samples)) { return false; } *data_start_pos = readable->GetPosition(); return true; } } // namespace webrtc