/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/timing.h" #include #include #include "rtc_base/experiments/field_trial_parser.h" #include "rtc_base/time/timestamp_extrapolator.h" #include "system_wrappers/include/clock.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { VCMTiming::VCMTiming(Clock* clock) : clock_(clock), ts_extrapolator_(std::make_unique( clock_->TimeInMilliseconds())), codec_timer_(std::make_unique()), render_delay_ms_(kDefaultRenderDelayMs), min_playout_delay_ms_(0), max_playout_delay_ms_(10000), jitter_delay_ms_(0), current_delay_ms_(0), prev_frame_timestamp_(0), timing_frame_info_(), num_decoded_frames_(0), low_latency_renderer_enabled_("enabled", true) { ParseFieldTrial({&low_latency_renderer_enabled_}, field_trial::FindFullName("WebRTC-LowLatencyRenderer")); } void VCMTiming::Reset() { MutexLock lock(&mutex_); ts_extrapolator_->Reset(clock_->TimeInMilliseconds()); codec_timer_ = std::make_unique(); render_delay_ms_ = kDefaultRenderDelayMs; min_playout_delay_ms_ = 0; jitter_delay_ms_ = 0; current_delay_ms_ = 0; prev_frame_timestamp_ = 0; } void VCMTiming::set_render_delay(int render_delay_ms) { MutexLock lock(&mutex_); render_delay_ms_ = render_delay_ms; } void VCMTiming::set_min_playout_delay(int min_playout_delay_ms) { MutexLock lock(&mutex_); min_playout_delay_ms_ = min_playout_delay_ms; } int VCMTiming::min_playout_delay() { MutexLock lock(&mutex_); return min_playout_delay_ms_; } void VCMTiming::set_max_playout_delay(int max_playout_delay_ms) { MutexLock lock(&mutex_); max_playout_delay_ms_ = max_playout_delay_ms; } int VCMTiming::max_playout_delay() { MutexLock lock(&mutex_); return max_playout_delay_ms_; } void VCMTiming::SetJitterDelay(int jitter_delay_ms) { MutexLock lock(&mutex_); if (jitter_delay_ms != jitter_delay_ms_) { jitter_delay_ms_ = jitter_delay_ms; // When in initial state, set current delay to minimum delay. if (current_delay_ms_ == 0) { current_delay_ms_ = jitter_delay_ms_; } } } void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) { MutexLock lock(&mutex_); int target_delay_ms = TargetDelayInternal(); if (current_delay_ms_ == 0) { // Not initialized, set current delay to target. current_delay_ms_ = target_delay_ms; } else if (target_delay_ms != current_delay_ms_) { int64_t delay_diff_ms = static_cast(target_delay_ms) - current_delay_ms_; // Never change the delay with more than 100 ms every second. If we're // changing the delay in too large steps we will get noticeable freezes. By // limiting the change we can increase the delay in smaller steps, which // will be experienced as the video is played in slow motion. When lowering // the delay the video will be played at a faster pace. int64_t max_change_ms = 0; if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) { // wrap max_change_ms = kDelayMaxChangeMsPerS * (frame_timestamp + (static_cast(1) << 32) - prev_frame_timestamp_) / 90000; } else { max_change_ms = kDelayMaxChangeMsPerS * (frame_timestamp - prev_frame_timestamp_) / 90000; } if (max_change_ms <= 0) { // Any changes less than 1 ms are truncated and will be postponed. // Negative change will be due to reordering and should be ignored. return; } delay_diff_ms = std::max(delay_diff_ms, -max_change_ms); delay_diff_ms = std::min(delay_diff_ms, max_change_ms); current_delay_ms_ = current_delay_ms_ + delay_diff_ms; } prev_frame_timestamp_ = frame_timestamp; } void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms, int64_t actual_decode_time_ms) { MutexLock lock(&mutex_); uint32_t target_delay_ms = TargetDelayInternal(); int64_t delayed_ms = actual_decode_time_ms - (render_time_ms - RequiredDecodeTimeMs() - render_delay_ms_); if (delayed_ms < 0) { return; } if (current_delay_ms_ + delayed_ms <= target_delay_ms) { current_delay_ms_ += delayed_ms; } else { current_delay_ms_ = target_delay_ms; } } void VCMTiming::StopDecodeTimer(uint32_t /*time_stamp*/, int32_t decode_time_ms, int64_t now_ms, int64_t /*render_time_ms*/) { StopDecodeTimer(decode_time_ms, now_ms); } void VCMTiming::StopDecodeTimer(int32_t decode_time_ms, int64_t now_ms) { MutexLock lock(&mutex_); codec_timer_->AddTiming(decode_time_ms, now_ms); assert(decode_time_ms >= 0); ++num_decoded_frames_; } void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) { MutexLock lock(&mutex_); ts_extrapolator_->Update(now_ms, time_stamp); } int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp, int64_t now_ms) const { MutexLock lock(&mutex_); return RenderTimeMsInternal(frame_timestamp, now_ms); } int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp, int64_t now_ms) const { constexpr int kLowLatencyRendererMaxPlayoutDelayMs = 500; if (min_playout_delay_ms_ == 0 && (max_playout_delay_ms_ == 0 || (low_latency_renderer_enabled_ && max_playout_delay_ms_ <= kLowLatencyRendererMaxPlayoutDelayMs))) { // Render as soon as possible or with low-latency renderer algorithm. return 0; } // Note that TimestampExtrapolator::ExtrapolateLocalTime is not a const // method; it mutates the object's wraparound state. int64_t estimated_complete_time_ms = ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp); if (estimated_complete_time_ms == -1) { estimated_complete_time_ms = now_ms; } // Make sure the actual delay stays in the range of |min_playout_delay_ms_| // and |max_playout_delay_ms_|. int actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_); actual_delay = std::min(actual_delay, max_playout_delay_ms_); return estimated_complete_time_ms + actual_delay; } int VCMTiming::RequiredDecodeTimeMs() const { const int decode_time_ms = codec_timer_->RequiredDecodeTimeMs(); assert(decode_time_ms >= 0); return decode_time_ms; } int64_t VCMTiming::MaxWaitingTime(int64_t render_time_ms, int64_t now_ms) const { MutexLock lock(&mutex_); const int64_t max_wait_time_ms = render_time_ms - now_ms - RequiredDecodeTimeMs() - render_delay_ms_; return max_wait_time_ms; } int VCMTiming::TargetVideoDelay() const { MutexLock lock(&mutex_); return TargetDelayInternal(); } int VCMTiming::TargetDelayInternal() const { return std::max(min_playout_delay_ms_, jitter_delay_ms_ + RequiredDecodeTimeMs() + render_delay_ms_); } bool VCMTiming::GetTimings(int* max_decode_ms, int* current_delay_ms, int* target_delay_ms, int* jitter_buffer_ms, int* min_playout_delay_ms, int* render_delay_ms) const { MutexLock lock(&mutex_); *max_decode_ms = RequiredDecodeTimeMs(); *current_delay_ms = current_delay_ms_; *target_delay_ms = TargetDelayInternal(); *jitter_buffer_ms = jitter_delay_ms_; *min_playout_delay_ms = min_playout_delay_ms_; *render_delay_ms = render_delay_ms_; return (num_decoded_frames_ > 0); } void VCMTiming::SetTimingFrameInfo(const TimingFrameInfo& info) { MutexLock lock(&mutex_); timing_frame_info_.emplace(info); } absl::optional VCMTiming::GetTimingFrameInfo() { MutexLock lock(&mutex_); return timing_frame_info_; } void VCMTiming::SetMaxCompositionDelayInFrames( absl::optional max_composition_delay_in_frames) { MutexLock lock(&mutex_); max_composition_delay_in_frames_ = max_composition_delay_in_frames; } absl::optional VCMTiming::MaxCompositionDelayInFrames() const { MutexLock lock(&mutex_); return max_composition_delay_in_frames_; } } // namespace webrtc