/* * Copyright 2020 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/boringssl_certificate.h" #if defined(WEBRTC_WIN) // Must be included first before openssl headers. #include "rtc_base/win32.h" // NOLINT #endif // WEBRTC_WIN #include #include #include #include #include #include #include #include #include #include #include #include #include "rtc_base/checks.h" #include "rtc_base/helpers.h" #include "rtc_base/logging.h" #include "rtc_base/message_digest.h" #include "rtc_base/openssl_digest.h" #include "rtc_base/openssl_key_pair.h" #include "rtc_base/openssl_utility.h" namespace rtc { namespace { // List of OIDs of signature algorithms accepted by WebRTC. // Taken from openssl/nid.h. static const uint8_t kMD5WithRSA[] = {0x2b, 0x0e, 0x03, 0x02, 0x03}; static const uint8_t kMD5WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x04}; static const uint8_t kECDSAWithSHA1[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x01}; static const uint8_t kDSAWithSHA1[] = {0x2a, 0x86, 0x48, 0xce, 0x38, 0x04, 0x03}; static const uint8_t kDSAWithSHA1_2[] = {0x2b, 0x0e, 0x03, 0x02, 0x1b}; static const uint8_t kSHA1WithRSA[] = {0x2b, 0x0e, 0x03, 0x02, 0x1d}; static const uint8_t kSHA1WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x05}; static const uint8_t kECDSAWithSHA224[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x01}; static const uint8_t kSHA224WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x0e}; static const uint8_t kDSAWithSHA224[] = {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x03, 0x01}; static const uint8_t kECDSAWithSHA256[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x02}; static const uint8_t kSHA256WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x0b}; static const uint8_t kDSAWithSHA256[] = {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x03, 0x02}; static const uint8_t kECDSAWithSHA384[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x03}; static const uint8_t kSHA384WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x0c}; static const uint8_t kECDSAWithSHA512[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x04}; static const uint8_t kSHA512WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x0d}; #if !defined(NDEBUG) // Print a certificate to the log, for debugging. static void PrintCert(BoringSSLCertificate* cert) { // Since we're using CRYPTO_BUFFER, we can't use X509_print_ex, so we'll just // print the PEM string. RTC_DLOG(LS_VERBOSE) << "PEM representation of certificate:\n" << cert->ToPEMString(); } #endif bool AddSHA256SignatureAlgorithm(CBB* cbb, KeyType key_type) { // An AlgorithmIdentifier is described in RFC 5280, 4.1.1.2. CBB sequence, oid, params; if (!CBB_add_asn1(cbb, &sequence, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&sequence, &oid, CBS_ASN1_OBJECT)) { return false; } switch (key_type) { case KT_RSA: if (!CBB_add_bytes(&oid, kSHA256WithRSAEncryption, sizeof(kSHA256WithRSAEncryption)) || !CBB_add_asn1(&sequence, ¶ms, CBS_ASN1_NULL)) { return false; } break; case KT_ECDSA: if (!CBB_add_bytes(&oid, kECDSAWithSHA256, sizeof(kECDSAWithSHA256))) { return false; } break; default: RTC_NOTREACHED(); return false; } if (!CBB_flush(cbb)) { return false; } return true; } // Adds an X.509 Common Name to |cbb|. bool AddCommonName(CBB* cbb, const std::string& common_name) { // See RFC 4519. static const uint8_t kCommonName[] = {0x55, 0x04, 0x03}; if (common_name.empty()) { RTC_LOG(LS_ERROR) << "Common name cannot be empty."; return false; } // See RFC 5280, section 4.1.2.4. CBB rdns; if (!CBB_add_asn1(cbb, &rdns, CBS_ASN1_SEQUENCE)) { return false; } CBB rdn, attr, type, value; if (!CBB_add_asn1(&rdns, &rdn, CBS_ASN1_SET) || !CBB_add_asn1(&rdn, &attr, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&attr, &type, CBS_ASN1_OBJECT) || !CBB_add_bytes(&type, kCommonName, sizeof(kCommonName)) || !CBB_add_asn1(&attr, &value, CBS_ASN1_UTF8STRING) || !CBB_add_bytes(&value, reinterpret_cast(common_name.c_str()), common_name.size()) || !CBB_flush(cbb)) { return false; } return true; } bool AddTime(CBB* cbb, time_t time) { bssl::UniquePtr asn1_time(ASN1_TIME_new()); if (!asn1_time) { return false; } if (!ASN1_TIME_set(asn1_time.get(), time)) { return false; } unsigned tag; switch (asn1_time->type) { case V_ASN1_UTCTIME: tag = CBS_ASN1_UTCTIME; break; case V_ASN1_GENERALIZEDTIME: tag = CBS_ASN1_GENERALIZEDTIME; break; default: return false; } CBB child; if (!CBB_add_asn1(cbb, &child, tag) || !CBB_add_bytes(&child, asn1_time->data, asn1_time->length) || !CBB_flush(cbb)) { return false; } return true; } // Generate a self-signed certificate, with the public key from the // given key pair. Caller is responsible for freeing the returned object. static bssl::UniquePtr MakeCertificate( EVP_PKEY* pkey, const SSLIdentityParams& params) { RTC_LOG(LS_INFO) << "Making certificate for " << params.common_name; // See RFC 5280, section 4.1. First, construct the TBSCertificate. bssl::ScopedCBB cbb; CBB tbs_cert, version, validity; uint8_t* tbs_cert_bytes; size_t tbs_cert_len; uint64_t serial_number; if (!CBB_init(cbb.get(), 64) || !CBB_add_asn1(cbb.get(), &tbs_cert, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&tbs_cert, &version, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || !CBB_add_asn1_uint64(&version, 2) || !RAND_bytes(reinterpret_cast(&serial_number), sizeof(serial_number)) || !CBB_add_asn1_uint64(&tbs_cert, serial_number) || !AddSHA256SignatureAlgorithm(&tbs_cert, params.key_params.type()) || !AddCommonName(&tbs_cert, params.common_name) || // issuer !CBB_add_asn1(&tbs_cert, &validity, CBS_ASN1_SEQUENCE) || !AddTime(&validity, params.not_before) || !AddTime(&validity, params.not_after) || !AddCommonName(&tbs_cert, params.common_name) || // subject !EVP_marshal_public_key(&tbs_cert, pkey) || // subjectPublicKeyInfo !CBB_finish(cbb.get(), &tbs_cert_bytes, &tbs_cert_len)) { return nullptr; } bssl::UniquePtr delete_tbs_cert_bytes(tbs_cert_bytes); // Sign the TBSCertificate and write the entire certificate. CBB cert, signature; bssl::ScopedEVP_MD_CTX ctx; uint8_t* sig_out; size_t sig_len; uint8_t* cert_bytes; size_t cert_len; if (!CBB_init(cbb.get(), tbs_cert_len) || !CBB_add_asn1(cbb.get(), &cert, CBS_ASN1_SEQUENCE) || !CBB_add_bytes(&cert, tbs_cert_bytes, tbs_cert_len) || !AddSHA256SignatureAlgorithm(&cert, params.key_params.type()) || !CBB_add_asn1(&cert, &signature, CBS_ASN1_BITSTRING) || !CBB_add_u8(&signature, 0 /* no unused bits */) || !EVP_DigestSignInit(ctx.get(), nullptr, EVP_sha256(), nullptr, pkey) || // Compute the maximum signature length. !EVP_DigestSign(ctx.get(), nullptr, &sig_len, tbs_cert_bytes, tbs_cert_len) || !CBB_reserve(&signature, &sig_out, sig_len) || // Actually sign the TBSCertificate. !EVP_DigestSign(ctx.get(), sig_out, &sig_len, tbs_cert_bytes, tbs_cert_len) || !CBB_did_write(&signature, sig_len) || !CBB_finish(cbb.get(), &cert_bytes, &cert_len)) { return nullptr; } bssl::UniquePtr delete_cert_bytes(cert_bytes); RTC_LOG(LS_INFO) << "Returning certificate"; return bssl::UniquePtr( CRYPTO_BUFFER_new(cert_bytes, cert_len, openssl::GetBufferPool())); } } // namespace BoringSSLCertificate::BoringSSLCertificate( bssl::UniquePtr cert_buffer) : cert_buffer_(std::move(cert_buffer)) { RTC_DCHECK(cert_buffer_ != nullptr); } std::unique_ptr BoringSSLCertificate::Generate( OpenSSLKeyPair* key_pair, const SSLIdentityParams& params) { SSLIdentityParams actual_params(params); if (actual_params.common_name.empty()) { // Use a random string, arbitrarily 8 chars long. actual_params.common_name = CreateRandomString(8); } bssl::UniquePtr cert_buffer = MakeCertificate(key_pair->pkey(), actual_params); if (!cert_buffer) { openssl::LogSSLErrors("Generating certificate"); return nullptr; } auto ret = std::make_unique(std::move(cert_buffer)); #if !defined(NDEBUG) PrintCert(ret.get()); #endif return ret; } std::unique_ptr BoringSSLCertificate::FromPEMString( const std::string& pem_string) { std::string der; if (!SSLIdentity::PemToDer(kPemTypeCertificate, pem_string, &der)) { return nullptr; } bssl::UniquePtr cert_buffer( CRYPTO_BUFFER_new(reinterpret_cast(der.c_str()), der.length(), openssl::GetBufferPool())); if (!cert_buffer) { return nullptr; } return std::make_unique(std::move(cert_buffer)); } #define OID_MATCHES(oid, oid_other) \ (CBS_len(&oid) == sizeof(oid_other) && \ 0 == memcmp(CBS_data(&oid), oid_other, sizeof(oid_other))) bool BoringSSLCertificate::GetSignatureDigestAlgorithm( std::string* algorithm) const { CBS oid; if (!openssl::ParseCertificate(cert_buffer_.get(), &oid, nullptr)) { RTC_LOG(LS_ERROR) << "Failed to parse certificate."; return false; } if (OID_MATCHES(oid, kMD5WithRSA) || OID_MATCHES(oid, kMD5WithRSAEncryption)) { *algorithm = DIGEST_MD5; return true; } if (OID_MATCHES(oid, kECDSAWithSHA1) || OID_MATCHES(oid, kDSAWithSHA1) || OID_MATCHES(oid, kDSAWithSHA1_2) || OID_MATCHES(oid, kSHA1WithRSA) || OID_MATCHES(oid, kSHA1WithRSAEncryption)) { *algorithm = DIGEST_SHA_1; return true; } if (OID_MATCHES(oid, kECDSAWithSHA224) || OID_MATCHES(oid, kSHA224WithRSAEncryption) || OID_MATCHES(oid, kDSAWithSHA224)) { *algorithm = DIGEST_SHA_224; return true; } if (OID_MATCHES(oid, kECDSAWithSHA256) || OID_MATCHES(oid, kSHA256WithRSAEncryption) || OID_MATCHES(oid, kDSAWithSHA256)) { *algorithm = DIGEST_SHA_256; return true; } if (OID_MATCHES(oid, kECDSAWithSHA384) || OID_MATCHES(oid, kSHA384WithRSAEncryption)) { *algorithm = DIGEST_SHA_384; return true; } if (OID_MATCHES(oid, kECDSAWithSHA512) || OID_MATCHES(oid, kSHA512WithRSAEncryption)) { *algorithm = DIGEST_SHA_512; return true; } // Unknown algorithm. There are several unhandled options that are less // common and more complex. RTC_LOG(LS_ERROR) << "Unknown signature algorithm."; algorithm->clear(); return false; } bool BoringSSLCertificate::ComputeDigest(const std::string& algorithm, unsigned char* digest, size_t size, size_t* length) const { return ComputeDigest(cert_buffer_.get(), algorithm, digest, size, length); } bool BoringSSLCertificate::ComputeDigest(const CRYPTO_BUFFER* cert_buffer, const std::string& algorithm, unsigned char* digest, size_t size, size_t* length) { const EVP_MD* md = nullptr; unsigned int n = 0; if (!OpenSSLDigest::GetDigestEVP(algorithm, &md)) { return false; } if (size < static_cast(EVP_MD_size(md))) { return false; } if (!EVP_Digest(CRYPTO_BUFFER_data(cert_buffer), CRYPTO_BUFFER_len(cert_buffer), digest, &n, md, nullptr)) { return false; } *length = n; return true; } BoringSSLCertificate::~BoringSSLCertificate() {} std::unique_ptr BoringSSLCertificate::Clone() const { return std::make_unique( bssl::UpRef(cert_buffer_.get())); } std::string BoringSSLCertificate::ToPEMString() const { return SSLIdentity::DerToPem(kPemTypeCertificate, CRYPTO_BUFFER_data(cert_buffer_.get()), CRYPTO_BUFFER_len(cert_buffer_.get())); } void BoringSSLCertificate::ToDER(Buffer* der_buffer) const { der_buffer->SetData(CRYPTO_BUFFER_data(cert_buffer_.get()), CRYPTO_BUFFER_len(cert_buffer_.get())); } bool BoringSSLCertificate::operator==(const BoringSSLCertificate& other) const { return CRYPTO_BUFFER_len(cert_buffer_.get()) == CRYPTO_BUFFER_len(other.cert_buffer_.get()) && 0 == memcmp(CRYPTO_BUFFER_data(cert_buffer_.get()), CRYPTO_BUFFER_data(other.cert_buffer_.get()), CRYPTO_BUFFER_len(cert_buffer_.get())); } bool BoringSSLCertificate::operator!=(const BoringSSLCertificate& other) const { return !(*this == other); } int64_t BoringSSLCertificate::CertificateExpirationTime() const { int64_t ret; if (!openssl::ParseCertificate(cert_buffer_.get(), nullptr, &ret)) { RTC_LOG(LS_ERROR) << "Failed to parse certificate."; return -1; } return ret; } } // namespace rtc