/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/openssl_key_pair.h" #include #include #if defined(WEBRTC_WIN) // Must be included first before openssl headers. #include "rtc_base/win32.h" // NOLINT #endif // WEBRTC_WIN #include #include #include #include #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/openssl.h" #include "rtc_base/openssl_utility.h" namespace rtc { // We could have exposed a myriad of parameters for the crypto stuff, // but keeping it simple seems best. // Generate a key pair. Caller is responsible for freeing the returned object. static EVP_PKEY* MakeKey(const KeyParams& key_params) { RTC_LOG(LS_INFO) << "Making key pair"; EVP_PKEY* pkey = EVP_PKEY_new(); if (key_params.type() == KT_RSA) { int key_length = key_params.rsa_params().mod_size; BIGNUM* exponent = BN_new(); RSA* rsa = RSA_new(); if (!pkey || !exponent || !rsa || !BN_set_word(exponent, key_params.rsa_params().pub_exp) || !RSA_generate_key_ex(rsa, key_length, exponent, nullptr) || !EVP_PKEY_assign_RSA(pkey, rsa)) { EVP_PKEY_free(pkey); BN_free(exponent); RSA_free(rsa); RTC_LOG(LS_ERROR) << "Failed to make RSA key pair"; return nullptr; } // ownership of rsa struct was assigned, don't free it. BN_free(exponent); } else if (key_params.type() == KT_ECDSA) { if (key_params.ec_curve() == EC_NIST_P256) { EC_KEY* ec_key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); if (!ec_key) { EVP_PKEY_free(pkey); RTC_LOG(LS_ERROR) << "Failed to allocate EC key"; return nullptr; } // Ensure curve name is included when EC key is serialized. // Without this call, OpenSSL versions before 1.1.0 will create // certificates that don't work for TLS. // This is a no-op for BoringSSL and OpenSSL 1.1.0+ EC_KEY_set_asn1_flag(ec_key, OPENSSL_EC_NAMED_CURVE); if (!pkey || !ec_key || !EC_KEY_generate_key(ec_key) || !EVP_PKEY_assign_EC_KEY(pkey, ec_key)) { EVP_PKEY_free(pkey); EC_KEY_free(ec_key); RTC_LOG(LS_ERROR) << "Failed to make EC key pair"; return nullptr; } // ownership of ec_key struct was assigned, don't free it. } else { // Add generation of any other curves here. EVP_PKEY_free(pkey); RTC_LOG(LS_ERROR) << "ECDSA key requested for unknown curve"; return nullptr; } } else { EVP_PKEY_free(pkey); RTC_LOG(LS_ERROR) << "Key type requested not understood"; return nullptr; } RTC_LOG(LS_INFO) << "Returning key pair"; return pkey; } std::unique_ptr OpenSSLKeyPair::Generate( const KeyParams& key_params) { EVP_PKEY* pkey = MakeKey(key_params); if (!pkey) { openssl::LogSSLErrors("Generating key pair"); return nullptr; } return std::make_unique(pkey); } std::unique_ptr OpenSSLKeyPair::FromPrivateKeyPEMString( const std::string& pem_string) { BIO* bio = BIO_new_mem_buf(const_cast(pem_string.data()), pem_string.size()); if (!bio) { RTC_LOG(LS_ERROR) << "Failed to create a new BIO buffer."; return nullptr; } BIO_set_mem_eof_return(bio, 0); EVP_PKEY* pkey = PEM_read_bio_PrivateKey(bio, nullptr, nullptr, nullptr); BIO_free(bio); // Frees the BIO, but not the pointed-to string. if (!pkey) { RTC_LOG(LS_ERROR) << "Failed to create the private key from PEM string."; return nullptr; } if (EVP_PKEY_missing_parameters(pkey) != 0) { RTC_LOG(LS_ERROR) << "The resulting key pair is missing public key parameters."; EVP_PKEY_free(pkey); return nullptr; } return std::make_unique(pkey); } OpenSSLKeyPair::~OpenSSLKeyPair() { EVP_PKEY_free(pkey_); } std::unique_ptr OpenSSLKeyPair::Clone() { AddReference(); return std::make_unique(pkey_); } void OpenSSLKeyPair::AddReference() { EVP_PKEY_up_ref(pkey_); } std::string OpenSSLKeyPair::PrivateKeyToPEMString() const { BIO* temp_memory_bio = BIO_new(BIO_s_mem()); if (!temp_memory_bio) { RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; RTC_NOTREACHED(); return ""; } if (!PEM_write_bio_PrivateKey(temp_memory_bio, pkey_, nullptr, nullptr, 0, nullptr, nullptr)) { RTC_LOG_F(LS_ERROR) << "Failed to write private key"; BIO_free(temp_memory_bio); RTC_NOTREACHED(); return ""; } char* buffer; size_t len = BIO_get_mem_data(temp_memory_bio, &buffer); std::string priv_key_str(buffer, len); BIO_free(temp_memory_bio); return priv_key_str; } std::string OpenSSLKeyPair::PublicKeyToPEMString() const { BIO* temp_memory_bio = BIO_new(BIO_s_mem()); if (!temp_memory_bio) { RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; RTC_NOTREACHED(); return ""; } if (!PEM_write_bio_PUBKEY(temp_memory_bio, pkey_)) { RTC_LOG_F(LS_ERROR) << "Failed to write public key"; BIO_free(temp_memory_bio); RTC_NOTREACHED(); return ""; } BIO_write(temp_memory_bio, "\0", 1); char* buffer; BIO_get_mem_data(temp_memory_bio, &buffer); std::string pub_key_str = buffer; BIO_free(temp_memory_bio); return pub_key_str; } bool OpenSSLKeyPair::operator==(const OpenSSLKeyPair& other) const { return EVP_PKEY_cmp(this->pkey_, other.pkey_) == 1; } bool OpenSSLKeyPair::operator!=(const OpenSSLKeyPair& other) const { return !(*this == other); } } // namespace rtc