/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #if defined(WEBRTC_POSIX) #include #endif #if defined(WEBRTC_WIN) #include #endif #include "rtc_base/checks.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/system_time.h" #include "rtc_base/time_utils.h" namespace rtc { ClockInterface* g_clock = nullptr; ClockInterface* SetClockForTesting(ClockInterface* clock) { ClockInterface* prev = g_clock; g_clock = clock; return prev; } ClockInterface* GetClockForTesting() { return g_clock; } #if defined(WINUWP) namespace { class TimeHelper final { public: TimeHelper(const TimeHelper&) = delete; // Resets the clock based upon an NTP server. This routine must be called // prior to the main system start-up to ensure all clocks are based upon // an NTP server time if NTP synchronization is required. No critical // section is used thus this method must be called prior to any clock // routines being used. static void SyncWithNtp(int64_t ntp_server_time_ms) { auto& singleton = Singleton(); TIME_ZONE_INFORMATION time_zone; GetTimeZoneInformation(&time_zone); int64_t time_zone_bias_ns = rtc::dchecked_cast(time_zone.Bias) * 60 * 1000 * 1000 * 1000; singleton.app_start_time_ns_ = (ntp_server_time_ms - kNTPTimeToUnixTimeEpochOffset) * 1000000 - time_zone_bias_ns; singleton.UpdateReferenceTime(); } // Returns the number of nanoseconds that have passed since unix epoch. static int64_t TicksNs() { auto& singleton = Singleton(); int64_t result = 0; LARGE_INTEGER qpcnt; QueryPerformanceCounter(&qpcnt); result = rtc::dchecked_cast( (rtc::dchecked_cast(qpcnt.QuadPart) * 100000 / rtc::dchecked_cast(singleton.os_ticks_per_second_)) * 10000); result = singleton.app_start_time_ns_ + result - singleton.time_since_os_start_ns_; return result; } private: TimeHelper() { TIME_ZONE_INFORMATION time_zone; GetTimeZoneInformation(&time_zone); int64_t time_zone_bias_ns = rtc::dchecked_cast(time_zone.Bias) * 60 * 1000 * 1000 * 1000; FILETIME ft; // This will give us system file in UTC format. GetSystemTimeAsFileTime(&ft); LARGE_INTEGER li; li.HighPart = ft.dwHighDateTime; li.LowPart = ft.dwLowDateTime; app_start_time_ns_ = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) * 100 - time_zone_bias_ns; UpdateReferenceTime(); } static TimeHelper& Singleton() { static TimeHelper singleton; return singleton; } void UpdateReferenceTime() { LARGE_INTEGER qpfreq; QueryPerformanceFrequency(&qpfreq); os_ticks_per_second_ = rtc::dchecked_cast(qpfreq.QuadPart); LARGE_INTEGER qpcnt; QueryPerformanceCounter(&qpcnt); time_since_os_start_ns_ = rtc::dchecked_cast( (rtc::dchecked_cast(qpcnt.QuadPart) * 100000 / rtc::dchecked_cast(os_ticks_per_second_)) * 10000); } private: static constexpr uint64_t kFileTimeToUnixTimeEpochOffset = 116444736000000000ULL; static constexpr uint64_t kNTPTimeToUnixTimeEpochOffset = 2208988800000L; // The number of nanoseconds since unix system epoch int64_t app_start_time_ns_; // The number of nanoseconds since the OS started int64_t time_since_os_start_ns_; // The OS calculated ticks per second int64_t os_ticks_per_second_; }; } // namespace void SyncWithNtp(int64_t time_from_ntp_server_ms) { TimeHelper::SyncWithNtp(time_from_ntp_server_ms); } int64_t WinUwpSystemTimeNanos() { return TimeHelper::TicksNs(); } #endif // defined(WINUWP) int64_t SystemTimeMillis() { return static_cast(SystemTimeNanos() / kNumNanosecsPerMillisec); } int64_t TimeNanos() { if (g_clock) { return g_clock->TimeNanos(); } return SystemTimeNanos(); } uint32_t Time32() { return static_cast(TimeNanos() / kNumNanosecsPerMillisec); } int64_t TimeMillis() { return TimeNanos() / kNumNanosecsPerMillisec; } int64_t TimeMicros() { return TimeNanos() / kNumNanosecsPerMicrosec; } int64_t TimeAfter(int64_t elapsed) { RTC_DCHECK_GE(elapsed, 0); return TimeMillis() + elapsed; } int32_t TimeDiff32(uint32_t later, uint32_t earlier) { return later - earlier; } int64_t TimeDiff(int64_t later, int64_t earlier) { return later - earlier; } TimestampWrapAroundHandler::TimestampWrapAroundHandler() : last_ts_(0), num_wrap_(-1) {} int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) { if (num_wrap_ == -1) { last_ts_ = ts; num_wrap_ = 0; return ts; } if (ts < last_ts_) { if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff) ++num_wrap_; } else if ((ts - last_ts_) > 0xf0000000) { // Backwards wrap. Unwrap with last wrap count and don't update last_ts_. return ts + (num_wrap_ - 1) * (int64_t{1} << 32); } last_ts_ = ts; return ts + (num_wrap_ << 32); } int64_t TmToSeconds(const tm& tm) { static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; int year = tm.tm_year + 1900; int month = tm.tm_mon; int day = tm.tm_mday - 1; // Make 0-based like the rest. int hour = tm.tm_hour; int min = tm.tm_min; int sec = tm.tm_sec; bool expiry_in_leap_year = (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); if (year < 1970) return -1; if (month < 0 || month > 11) return -1; if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1)) return -1; if (hour < 0 || hour > 23) return -1; if (min < 0 || min > 59) return -1; if (sec < 0 || sec > 59) return -1; day += cumul_mdays[month]; // Add number of leap days between 1970 and the expiration year, inclusive. day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) + (year / 400 - 1970 / 400)); // We will have added one day too much above if expiration is during a leap // year, and expiration is in January or February. if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based. day -= 1; // Combine all variables into seconds from 1970-01-01 00:00 (except |month| // which was accumulated into |day| above). return (((static_cast(year - 1970) * 365 + day) * 24 + hour) * 60 + min) * 60 + sec; } int64_t TimeUTCMicros() { if (g_clock) { return g_clock->TimeNanos() / kNumNanosecsPerMicrosec; } #if defined(WEBRTC_POSIX) struct timeval time; gettimeofday(&time, nullptr); // Convert from second (1.0) and microsecond (1e-6). return (static_cast(time.tv_sec) * rtc::kNumMicrosecsPerSec + time.tv_usec); #elif defined(WEBRTC_WIN) struct _timeb time; _ftime(&time); // Convert from second (1.0) and milliseconds (1e-3). return (static_cast(time.time) * rtc::kNumMicrosecsPerSec + static_cast(time.millitm) * rtc::kNumMicrosecsPerMillisec); #endif } int64_t TimeUTCMillis() { return TimeUTCMicros() / kNumMicrosecsPerMillisec; } } // namespace rtc