/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../internal.h" #include "../test/test_util.h" struct MD { // name is the name of the digest. const char* name; // md_func is the digest to test. const EVP_MD *(*func)(void); // one_shot_func is the convenience one-shot version of the // digest. uint8_t *(*one_shot_func)(const uint8_t *, size_t, uint8_t *); }; static const MD md4 = { "MD4", &EVP_md4, nullptr }; static const MD md5 = { "MD5", &EVP_md5, &MD5 }; static const MD sha1 = { "SHA1", &EVP_sha1, &SHA1 }; static const MD sha224 = { "SHA224", &EVP_sha224, &SHA224 }; static const MD sha256 = { "SHA256", &EVP_sha256, &SHA256 }; static const MD sha384 = { "SHA384", &EVP_sha384, &SHA384 }; static const MD sha512 = { "SHA512", &EVP_sha512, &SHA512 }; static const MD md5_sha1 = { "MD5-SHA1", &EVP_md5_sha1, nullptr }; struct DigestTestVector { // md is the digest to test. const MD &md; // input is a NUL-terminated string to hash. const char *input; // repeat is the number of times to repeat input. size_t repeat; // expected_hex is the expected digest in hexadecimal. const char *expected_hex; }; static const DigestTestVector kTestVectors[] = { // MD4 tests, from RFC 1320. (crypto/md4 does not provide a // one-shot MD4 function.) { md4, "", 1, "31d6cfe0d16ae931b73c59d7e0c089c0" }, { md4, "a", 1, "bde52cb31de33e46245e05fbdbd6fb24" }, { md4, "abc", 1, "a448017aaf21d8525fc10ae87aa6729d" }, { md4, "message digest", 1, "d9130a8164549fe818874806e1c7014b" }, { md4, "abcdefghijklmnopqrstuvwxyz", 1, "d79e1c308aa5bbcdeea8ed63df412da9" }, { md4, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 1, "043f8582f241db351ce627e153e7f0e4" }, { md4, "1234567890", 8, "e33b4ddc9c38f2199c3e7b164fcc0536" }, // MD5 tests, from RFC 1321. { md5, "", 1, "d41d8cd98f00b204e9800998ecf8427e" }, { md5, "a", 1, "0cc175b9c0f1b6a831c399e269772661" }, { md5, "abc", 1, "900150983cd24fb0d6963f7d28e17f72" }, { md5, "message digest", 1, "f96b697d7cb7938d525a2f31aaf161d0" }, { md5, "abcdefghijklmnopqrstuvwxyz", 1, "c3fcd3d76192e4007dfb496cca67e13b" }, { md5, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 1, "d174ab98d277d9f5a5611c2c9f419d9f" }, { md5, "1234567890", 8, "57edf4a22be3c955ac49da2e2107b67a" }, // SHA-1 tests, from RFC 3174. { sha1, "abc", 1, "a9993e364706816aba3e25717850c26c9cd0d89d" }, { sha1, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 1, "84983e441c3bd26ebaae4aa1f95129e5e54670f1" }, { sha1, "a", 1000000, "34aa973cd4c4daa4f61eeb2bdbad27316534016f" }, { sha1, "0123456701234567012345670123456701234567012345670123456701234567", 10, "dea356a2cddd90c7a7ecedc5ebb563934f460452" }, // SHA-224 tests, from RFC 3874. { sha224, "abc", 1, "23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7" }, { sha224, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 1, "75388b16512776cc5dba5da1fd890150b0c6455cb4f58b1952522525" }, { sha224, "a", 1000000, "20794655980c91d8bbb4c1ea97618a4bf03f42581948b2ee4ee7ad67" }, // SHA-256 tests, from NIST. { sha256, "abc", 1, "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad" }, { sha256, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 1, "248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1" }, // SHA-384 tests, from NIST. { sha384, "abc", 1, "cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed" "8086072ba1e7cc2358baeca134c825a7" }, { sha384, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 1, "09330c33f71147e83d192fc782cd1b4753111b173b3b05d22fa08086e3b0f712" "fcc7c71a557e2db966c3e9fa91746039" }, // SHA-512 tests, from NIST. { sha512, "abc", 1, "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a" "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f" }, { sha512, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 1, "8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018" "501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909" }, // MD5-SHA1 tests. { md5_sha1, "abc", 1, "900150983cd24fb0d6963f7d28e17f72a9993e364706816aba3e25717850c26c9cd0d89d" }, }; static void CompareDigest(const DigestTestVector *test, const uint8_t *digest, size_t digest_len) { static const char kHexTable[] = "0123456789abcdef"; char digest_hex[2*EVP_MAX_MD_SIZE + 1]; for (size_t i = 0; i < digest_len; i++) { digest_hex[2*i] = kHexTable[digest[i] >> 4]; digest_hex[2*i + 1] = kHexTable[digest[i] & 0xf]; } digest_hex[2*digest_len] = '\0'; EXPECT_STREQ(test->expected_hex, digest_hex); } static void TestDigest(const DigestTestVector *test) { bssl::ScopedEVP_MD_CTX ctx; // Test the input provided. ASSERT_TRUE(EVP_DigestInit_ex(ctx.get(), test->md.func(), NULL)); for (size_t i = 0; i < test->repeat; i++) { ASSERT_TRUE(EVP_DigestUpdate(ctx.get(), test->input, strlen(test->input))); } std::unique_ptr digest(new uint8_t[EVP_MD_size(test->md.func())]); unsigned digest_len; ASSERT_TRUE(EVP_DigestFinal_ex(ctx.get(), digest.get(), &digest_len)); CompareDigest(test, digest.get(), digest_len); // Test the input one character at a time. ASSERT_TRUE(EVP_DigestInit_ex(ctx.get(), test->md.func(), NULL)); ASSERT_TRUE(EVP_DigestUpdate(ctx.get(), NULL, 0)); for (size_t i = 0; i < test->repeat; i++) { for (const char *p = test->input; *p; p++) { ASSERT_TRUE(EVP_DigestUpdate(ctx.get(), p, 1)); } } ASSERT_TRUE(EVP_DigestFinal_ex(ctx.get(), digest.get(), &digest_len)); EXPECT_EQ(EVP_MD_size(test->md.func()), digest_len); CompareDigest(test, digest.get(), digest_len); // Test with unaligned input. ASSERT_TRUE(EVP_DigestInit_ex(ctx.get(), test->md.func(), NULL)); std::vector unaligned(strlen(test->input) + 1); char *ptr = unaligned.data(); if ((reinterpret_cast(ptr) & 1) == 0) { ptr++; } OPENSSL_memcpy(ptr, test->input, strlen(test->input)); for (size_t i = 0; i < test->repeat; i++) { ASSERT_TRUE(EVP_DigestUpdate(ctx.get(), ptr, strlen(test->input))); } ASSERT_TRUE(EVP_DigestFinal_ex(ctx.get(), digest.get(), &digest_len)); CompareDigest(test, digest.get(), digest_len); // Make a copy of the digest in the initial state. ASSERT_TRUE(EVP_DigestInit_ex(ctx.get(), test->md.func(), NULL)); bssl::ScopedEVP_MD_CTX copy; ASSERT_TRUE(EVP_MD_CTX_copy_ex(copy.get(), ctx.get())); for (size_t i = 0; i < test->repeat; i++) { ASSERT_TRUE(EVP_DigestUpdate(copy.get(), test->input, strlen(test->input))); } ASSERT_TRUE(EVP_DigestFinal_ex(copy.get(), digest.get(), &digest_len)); CompareDigest(test, digest.get(), digest_len); // Make a copy of the digest with half the input provided. size_t half = strlen(test->input) / 2; ASSERT_TRUE(EVP_DigestUpdate(ctx.get(), test->input, half)); ASSERT_TRUE(EVP_MD_CTX_copy_ex(copy.get(), ctx.get())); ASSERT_TRUE(EVP_DigestUpdate(copy.get(), test->input + half, strlen(test->input) - half)); for (size_t i = 1; i < test->repeat; i++) { ASSERT_TRUE(EVP_DigestUpdate(copy.get(), test->input, strlen(test->input))); } ASSERT_TRUE(EVP_DigestFinal_ex(copy.get(), digest.get(), &digest_len)); CompareDigest(test, digest.get(), digest_len); // Test the one-shot function. if (test->md.one_shot_func && test->repeat == 1) { uint8_t *out = test->md.one_shot_func((const uint8_t *)test->input, strlen(test->input), digest.get()); // One-shot functions return their supplied buffers. EXPECT_EQ(digest.get(), out); CompareDigest(test, digest.get(), EVP_MD_size(test->md.func())); } } TEST(DigestTest, TestVectors) { for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kTestVectors); i++) { SCOPED_TRACE(i); TestDigest(&kTestVectors[i]); } } TEST(DigestTest, Getters) { EXPECT_EQ(EVP_sha512(), EVP_get_digestbyname("RSA-SHA512")); EXPECT_EQ(EVP_sha512(), EVP_get_digestbyname("sha512WithRSAEncryption")); EXPECT_EQ(nullptr, EVP_get_digestbyname("nonsense")); EXPECT_EQ(EVP_sha512(), EVP_get_digestbyname("SHA512")); EXPECT_EQ(EVP_sha512(), EVP_get_digestbyname("sha512")); EXPECT_EQ(EVP_sha512(), EVP_get_digestbynid(NID_sha512)); EXPECT_EQ(nullptr, EVP_get_digestbynid(NID_sha512WithRSAEncryption)); EXPECT_EQ(nullptr, EVP_get_digestbynid(NID_undef)); bssl::UniquePtr obj(OBJ_txt2obj("1.3.14.3.2.26", 0)); ASSERT_TRUE(obj); EXPECT_EQ(EVP_sha1(), EVP_get_digestbyobj(obj.get())); EXPECT_EQ(EVP_md5_sha1(), EVP_get_digestbyobj(OBJ_nid2obj(NID_md5_sha1))); EXPECT_EQ(EVP_sha1(), EVP_get_digestbyobj(OBJ_nid2obj(NID_sha1))); } TEST(DigestTest, ASN1) { bssl::ScopedCBB cbb; ASSERT_TRUE(CBB_init(cbb.get(), 0)); EXPECT_FALSE(EVP_marshal_digest_algorithm(cbb.get(), EVP_md5_sha1())); static const uint8_t kSHA256[] = {0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00}; static const uint8_t kSHA256NoParam[] = {0x30, 0x0b, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01}; static const uint8_t kSHA256GarbageParam[] = { 0x30, 0x0e, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x02, 0x01, 0x2a}; // Serialize SHA-256. cbb.Reset(); ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(EVP_marshal_digest_algorithm(cbb.get(), EVP_sha256())); uint8_t *der; size_t der_len; ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len)); bssl::UniquePtr free_der(der); EXPECT_EQ(Bytes(kSHA256), Bytes(der, der_len)); // Parse SHA-256. CBS cbs; CBS_init(&cbs, kSHA256, sizeof(kSHA256)); EXPECT_EQ(EVP_sha256(), EVP_parse_digest_algorithm(&cbs)); EXPECT_EQ(0u, CBS_len(&cbs)); // Missing parameters are tolerated for compatibility. CBS_init(&cbs, kSHA256NoParam, sizeof(kSHA256NoParam)); EXPECT_EQ(EVP_sha256(), EVP_parse_digest_algorithm(&cbs)); EXPECT_EQ(0u, CBS_len(&cbs)); // Garbage parameters are not. CBS_init(&cbs, kSHA256GarbageParam, sizeof(kSHA256GarbageParam)); EXPECT_FALSE(EVP_parse_digest_algorithm(&cbs)); } TEST(DigestTest, TransformBlocks) { uint8_t blocks[SHA256_CBLOCK * 10]; for (size_t i = 0; i < sizeof(blocks); i++) { blocks[i] = i*3; } SHA256_CTX ctx1; SHA256_Init(&ctx1); SHA256_Update(&ctx1, blocks, sizeof(blocks)); SHA256_CTX ctx2; SHA256_Init(&ctx2); SHA256_TransformBlocks(ctx2.h, blocks, sizeof(blocks) / SHA256_CBLOCK); EXPECT_TRUE(0 == OPENSSL_memcmp(ctx1.h, ctx2.h, sizeof(ctx1.h))); }