/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/internal.h" BSSL_NAMESPACE_BEGIN static bool ssl_check_clienthello_tlsext(SSL_HANDSHAKE *hs); static int compare_uint16_t(const void *p1, const void *p2) { uint16_t u1 = *((const uint16_t *)p1); uint16_t u2 = *((const uint16_t *)p2); if (u1 < u2) { return -1; } else if (u1 > u2) { return 1; } else { return 0; } } // Per http://tools.ietf.org/html/rfc5246#section-7.4.1.4, there may not be // more than one extension of the same type in a ClientHello or ServerHello. // This function does an initial scan over the extensions block to filter those // out. static bool tls1_check_duplicate_extensions(const CBS *cbs) { // First pass: count the extensions. size_t num_extensions = 0; CBS extensions = *cbs; while (CBS_len(&extensions) > 0) { uint16_t type; CBS extension; if (!CBS_get_u16(&extensions, &type) || !CBS_get_u16_length_prefixed(&extensions, &extension)) { return false; } num_extensions++; } if (num_extensions == 0) { return true; } Array extension_types; if (!extension_types.Init(num_extensions)) { return false; } // Second pass: gather the extension types. extensions = *cbs; for (size_t i = 0; i < extension_types.size(); i++) { CBS extension; if (!CBS_get_u16(&extensions, &extension_types[i]) || !CBS_get_u16_length_prefixed(&extensions, &extension)) { // This should not happen. return false; } } assert(CBS_len(&extensions) == 0); // Sort the extensions and make sure there are no duplicates. qsort(extension_types.data(), extension_types.size(), sizeof(uint16_t), compare_uint16_t); for (size_t i = 1; i < num_extensions; i++) { if (extension_types[i - 1] == extension_types[i]) { return false; } } return true; } static bool is_post_quantum_group(uint16_t id) { return id == SSL_CURVE_CECPQ2 || id == SSL_CURVE_CECPQ2b; } bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out, const SSLMessage &msg) { OPENSSL_memset(out, 0, sizeof(*out)); out->ssl = const_cast(ssl); out->client_hello = CBS_data(&msg.body); out->client_hello_len = CBS_len(&msg.body); CBS client_hello, random, session_id; CBS_init(&client_hello, out->client_hello, out->client_hello_len); if (!CBS_get_u16(&client_hello, &out->version) || !CBS_get_bytes(&client_hello, &random, SSL3_RANDOM_SIZE) || !CBS_get_u8_length_prefixed(&client_hello, &session_id) || CBS_len(&session_id) > SSL_MAX_SSL_SESSION_ID_LENGTH) { return false; } out->random = CBS_data(&random); out->random_len = CBS_len(&random); out->session_id = CBS_data(&session_id); out->session_id_len = CBS_len(&session_id); // Skip past DTLS cookie if (SSL_is_dtls(out->ssl)) { CBS cookie; if (!CBS_get_u8_length_prefixed(&client_hello, &cookie) || CBS_len(&cookie) > DTLS1_COOKIE_LENGTH) { return false; } } CBS cipher_suites, compression_methods; if (!CBS_get_u16_length_prefixed(&client_hello, &cipher_suites) || CBS_len(&cipher_suites) < 2 || (CBS_len(&cipher_suites) & 1) != 0 || !CBS_get_u8_length_prefixed(&client_hello, &compression_methods) || CBS_len(&compression_methods) < 1) { return false; } out->cipher_suites = CBS_data(&cipher_suites); out->cipher_suites_len = CBS_len(&cipher_suites); out->compression_methods = CBS_data(&compression_methods); out->compression_methods_len = CBS_len(&compression_methods); // If the ClientHello ends here then it's valid, but doesn't have any // extensions. if (CBS_len(&client_hello) == 0) { out->extensions = NULL; out->extensions_len = 0; return true; } // Extract extensions and check it is valid. CBS extensions; if (!CBS_get_u16_length_prefixed(&client_hello, &extensions) || !tls1_check_duplicate_extensions(&extensions) || CBS_len(&client_hello) != 0) { return false; } out->extensions = CBS_data(&extensions); out->extensions_len = CBS_len(&extensions); return true; } bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello, CBS *out, uint16_t extension_type) { CBS extensions; CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len); while (CBS_len(&extensions) != 0) { // Decode the next extension. uint16_t type; CBS extension; if (!CBS_get_u16(&extensions, &type) || !CBS_get_u16_length_prefixed(&extensions, &extension)) { return false; } if (type == extension_type) { *out = extension; return true; } } return false; } static const uint16_t kDefaultGroups[] = { SSL_CURVE_X25519, SSL_CURVE_SECP256R1, SSL_CURVE_SECP384R1, }; Span tls1_get_grouplist(const SSL_HANDSHAKE *hs) { if (!hs->config->supported_group_list.empty()) { return hs->config->supported_group_list; } return Span(kDefaultGroups); } bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id) { SSL *const ssl = hs->ssl; assert(ssl->server); // Clients are not required to send a supported_groups extension. In this // case, the server is free to pick any group it likes. See RFC 4492, // section 4, paragraph 3. // // However, in the interests of compatibility, we will skip ECDH if the // client didn't send an extension because we can't be sure that they'll // support our favoured group. Thus we do not special-case an emtpy // |peer_supported_group_list|. Span groups = tls1_get_grouplist(hs); Span pref, supp; if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { pref = groups; supp = hs->peer_supported_group_list; } else { pref = hs->peer_supported_group_list; supp = groups; } for (uint16_t pref_group : pref) { for (uint16_t supp_group : supp) { if (pref_group == supp_group && // CECPQ2(b) doesn't fit in the u8-length-prefixed ECPoint field in // TLS 1.2 and below. (ssl_protocol_version(ssl) >= TLS1_3_VERSION || !is_post_quantum_group(pref_group))) { *out_group_id = pref_group; return true; } } } return false; } bool tls1_set_curves(Array *out_group_ids, Span curves) { Array group_ids; if (!group_ids.Init(curves.size())) { return false; } for (size_t i = 0; i < curves.size(); i++) { if (!ssl_nid_to_group_id(&group_ids[i], curves[i])) { return false; } } *out_group_ids = std::move(group_ids); return true; } bool tls1_set_curves_list(Array *out_group_ids, const char *curves) { // Count the number of curves in the list. size_t count = 0; const char *ptr = curves, *col; do { col = strchr(ptr, ':'); count++; if (col) { ptr = col + 1; } } while (col); Array group_ids; if (!group_ids.Init(count)) { return false; } size_t i = 0; ptr = curves; do { col = strchr(ptr, ':'); if (!ssl_name_to_group_id(&group_ids[i++], ptr, col ? (size_t)(col - ptr) : strlen(ptr))) { return false; } if (col) { ptr = col + 1; } } while (col); assert(i == count); *out_group_ids = std::move(group_ids); return true; } bool tls1_check_group_id(const SSL_HANDSHAKE *hs, uint16_t group_id) { if (is_post_quantum_group(group_id) && ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) { // CECPQ2(b) requires TLS 1.3. return false; } for (uint16_t supported : tls1_get_grouplist(hs)) { if (supported == group_id) { return true; } } return false; } // kVerifySignatureAlgorithms is the default list of accepted signature // algorithms for verifying. // // For now, RSA-PSS signature algorithms are not enabled on Android's system // BoringSSL. Once the change in Chrome has stuck and the values are finalized, // restore them. static const uint16_t kVerifySignatureAlgorithms[] = { // List our preferred algorithms first. SSL_SIGN_ED25519, SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PSS_RSAE_SHA256, SSL_SIGN_RSA_PKCS1_SHA256, // Larger hashes are acceptable. SSL_SIGN_ECDSA_SECP384R1_SHA384, SSL_SIGN_RSA_PSS_RSAE_SHA384, SSL_SIGN_RSA_PKCS1_SHA384, SSL_SIGN_RSA_PSS_RSAE_SHA512, SSL_SIGN_RSA_PKCS1_SHA512, // For now, SHA-1 is still accepted but least preferable. SSL_SIGN_RSA_PKCS1_SHA1, }; // kSignSignatureAlgorithms is the default list of supported signature // algorithms for signing. // // For now, RSA-PSS signature algorithms are not enabled on Android's system // BoringSSL. Once the change in Chrome has stuck and the values are finalized, // restore them. static const uint16_t kSignSignatureAlgorithms[] = { // List our preferred algorithms first. SSL_SIGN_ED25519, SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PSS_RSAE_SHA256, SSL_SIGN_RSA_PKCS1_SHA256, // If needed, sign larger hashes. // // TODO(davidben): Determine which of these may be pruned. SSL_SIGN_ECDSA_SECP384R1_SHA384, SSL_SIGN_RSA_PSS_RSAE_SHA384, SSL_SIGN_RSA_PKCS1_SHA384, SSL_SIGN_ECDSA_SECP521R1_SHA512, SSL_SIGN_RSA_PSS_RSAE_SHA512, SSL_SIGN_RSA_PKCS1_SHA512, // If the peer supports nothing else, sign with SHA-1. SSL_SIGN_ECDSA_SHA1, SSL_SIGN_RSA_PKCS1_SHA1, }; struct SSLSignatureAlgorithmList { bool Next(uint16_t *out) { while (!list.empty()) { uint16_t sigalg = list[0]; list = list.subspan(1); if (skip_ed25519 && sigalg == SSL_SIGN_ED25519) { continue; } if (skip_rsa_pss_rsae && SSL_is_signature_algorithm_rsa_pss(sigalg)) { continue; } *out = sigalg; return true; } return false; } bool operator==(const SSLSignatureAlgorithmList &other) const { SSLSignatureAlgorithmList a = *this; SSLSignatureAlgorithmList b = other; uint16_t a_val, b_val; while (a.Next(&a_val)) { if (!b.Next(&b_val) || a_val != b_val) { return false; } } return !b.Next(&b_val); } bool operator!=(const SSLSignatureAlgorithmList &other) const { return !(*this == other); } Span list; bool skip_ed25519 = false; bool skip_rsa_pss_rsae = false; }; static SSLSignatureAlgorithmList tls12_get_verify_sigalgs(const SSL *ssl, bool for_certs) { SSLSignatureAlgorithmList ret; if (!ssl->config->verify_sigalgs.empty()) { ret.list = ssl->config->verify_sigalgs; } else { ret.list = kVerifySignatureAlgorithms; ret.skip_ed25519 = !ssl->ctx->ed25519_enabled; } if (for_certs) { ret.skip_rsa_pss_rsae = !ssl->ctx->rsa_pss_rsae_certs_enabled; } return ret; } bool tls12_add_verify_sigalgs(const SSL *ssl, CBB *out, bool for_certs) { SSLSignatureAlgorithmList list = tls12_get_verify_sigalgs(ssl, for_certs); uint16_t sigalg; while (list.Next(&sigalg)) { if (!CBB_add_u16(out, sigalg)) { return false; } } return true; } bool tls12_check_peer_sigalg(const SSL *ssl, uint8_t *out_alert, uint16_t sigalg) { SSLSignatureAlgorithmList list = tls12_get_verify_sigalgs(ssl, false); uint16_t verify_sigalg; while (list.Next(&verify_sigalg)) { if (verify_sigalg == sigalg) { return true; } } OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } bool tls12_has_different_verify_sigalgs_for_certs(const SSL *ssl) { return tls12_get_verify_sigalgs(ssl, true) != tls12_get_verify_sigalgs(ssl, false); } // tls_extension represents a TLS extension that is handled internally. The // |init| function is called for each handshake, before any other functions of // the extension. Then the add and parse callbacks are called as needed. // // The parse callbacks receive a |CBS| that contains the contents of the // extension (i.e. not including the type and length bytes). If an extension is // not received then the parse callbacks will be called with a NULL CBS so that // they can do any processing needed to handle the absence of an extension. // // The add callbacks receive a |CBB| to which the extension can be appended but // the function is responsible for appending the type and length bytes too. // // All callbacks return true for success and false for error. If a parse // function returns zero then a fatal alert with value |*out_alert| will be // sent. If |*out_alert| isn't set, then a |decode_error| alert will be sent. struct tls_extension { uint16_t value; void (*init)(SSL_HANDSHAKE *hs); bool (*add_clienthello)(SSL_HANDSHAKE *hs, CBB *out); bool (*parse_serverhello)(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents); bool (*parse_clienthello)(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents); bool (*add_serverhello)(SSL_HANDSHAKE *hs, CBB *out); }; static bool forbid_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents != NULL) { // Servers MUST NOT send this extension. *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); return false; } return true; } static bool ignore_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { // This extension from the client is handled elsewhere. return true; } static bool dont_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { return true; } // Server name indication (SNI). // // https://tools.ietf.org/html/rfc6066#section-3. static bool ext_sni_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (ssl->hostname == nullptr) { return true; } CBB contents, server_name_list, name; if (!CBB_add_u16(out, TLSEXT_TYPE_server_name) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &server_name_list) || !CBB_add_u8(&server_name_list, TLSEXT_NAMETYPE_host_name) || !CBB_add_u16_length_prefixed(&server_name_list, &name) || !CBB_add_bytes(&name, (const uint8_t *)ssl->hostname.get(), strlen(ssl->hostname.get())) || !CBB_flush(out)) { return false; } return true; } static bool ext_sni_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { // The server may acknowledge SNI with an empty extension. We check the syntax // but otherwise ignore this signal. return contents == NULL || CBS_len(contents) == 0; } static bool ext_sni_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { // SNI has already been parsed earlier in the handshake. See |extract_sni|. return true; } static bool ext_sni_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { if (hs->ssl->s3->session_reused || !hs->should_ack_sni) { return true; } if (!CBB_add_u16(out, TLSEXT_TYPE_server_name) || !CBB_add_u16(out, 0 /* length */)) { return false; } return true; } // Renegotiation indication. // // https://tools.ietf.org/html/rfc5746 static bool ext_ri_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; // Renegotiation indication is not necessary in TLS 1.3. if (hs->min_version >= TLS1_3_VERSION) { return true; } assert(ssl->s3->initial_handshake_complete == (ssl->s3->previous_client_finished_len != 0)); CBB contents, prev_finished; if (!CBB_add_u16(out, TLSEXT_TYPE_renegotiate) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u8_length_prefixed(&contents, &prev_finished) || !CBB_add_bytes(&prev_finished, ssl->s3->previous_client_finished, ssl->s3->previous_client_finished_len) || !CBB_flush(out)) { return false; } return true; } static bool ext_ri_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents != NULL && ssl_protocol_version(ssl) >= TLS1_3_VERSION) { *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } // Servers may not switch between omitting the extension and supporting it. // See RFC 5746, sections 3.5 and 4.2. if (ssl->s3->initial_handshake_complete && (contents != NULL) != ssl->s3->send_connection_binding) { *out_alert = SSL_AD_HANDSHAKE_FAILURE; OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); return false; } if (contents == NULL) { // Strictly speaking, if we want to avoid an attack we should *always* see // RI even on initial ServerHello because the client doesn't see any // renegotiation during an attack. However this would mean we could not // connect to any server which doesn't support RI. // // OpenSSL has |SSL_OP_LEGACY_SERVER_CONNECT| to control this, but in // practical terms every client sets it so it's just assumed here. return true; } const size_t expected_len = ssl->s3->previous_client_finished_len + ssl->s3->previous_server_finished_len; // Check for logic errors assert(!expected_len || ssl->s3->previous_client_finished_len); assert(!expected_len || ssl->s3->previous_server_finished_len); assert(ssl->s3->initial_handshake_complete == (ssl->s3->previous_client_finished_len != 0)); assert(ssl->s3->initial_handshake_complete == (ssl->s3->previous_server_finished_len != 0)); // Parse out the extension contents. CBS renegotiated_connection; if (!CBS_get_u8_length_prefixed(contents, &renegotiated_connection) || CBS_len(contents) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_ENCODING_ERR); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } // Check that the extension matches. if (CBS_len(&renegotiated_connection) != expected_len) { OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); *out_alert = SSL_AD_HANDSHAKE_FAILURE; return false; } const uint8_t *d = CBS_data(&renegotiated_connection); bool ok = CRYPTO_memcmp(d, ssl->s3->previous_client_finished, ssl->s3->previous_client_finished_len) == 0; #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) ok = true; #endif if (!ok) { OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); *out_alert = SSL_AD_HANDSHAKE_FAILURE; return false; } d += ssl->s3->previous_client_finished_len; ok = CRYPTO_memcmp(d, ssl->s3->previous_server_finished, ssl->s3->previous_server_finished_len) == 0; #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) ok = true; #endif if (!ok) { OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); *out_alert = SSL_AD_HANDSHAKE_FAILURE; return false; } ssl->s3->send_connection_binding = true; return true; } static bool ext_ri_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; // Renegotiation isn't supported as a server so this function should never be // called after the initial handshake. assert(!ssl->s3->initial_handshake_complete); if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return true; } if (contents == NULL) { return true; } CBS renegotiated_connection; if (!CBS_get_u8_length_prefixed(contents, &renegotiated_connection) || CBS_len(contents) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_ENCODING_ERR); return false; } // Check that the extension matches. We do not support renegotiation as a // server, so this must be empty. if (CBS_len(&renegotiated_connection) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH); *out_alert = SSL_AD_HANDSHAKE_FAILURE; return false; } ssl->s3->send_connection_binding = true; return true; } static bool ext_ri_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; // Renegotiation isn't supported as a server so this function should never be // called after the initial handshake. assert(!ssl->s3->initial_handshake_complete); if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return true; } if (!CBB_add_u16(out, TLSEXT_TYPE_renegotiate) || !CBB_add_u16(out, 1 /* length */) || !CBB_add_u8(out, 0 /* empty renegotiation info */)) { return false; } return true; } // Extended Master Secret. // // https://tools.ietf.org/html/rfc7627 static bool ext_ems_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { // Extended master secret is not necessary in TLS 1.3. if (hs->min_version >= TLS1_3_VERSION) { return true; } if (!CBB_add_u16(out, TLSEXT_TYPE_extended_master_secret) || !CBB_add_u16(out, 0 /* length */)) { return false; } return true; } static bool ext_ems_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents != NULL) { if (ssl_protocol_version(ssl) >= TLS1_3_VERSION || CBS_len(contents) != 0) { return false; } hs->extended_master_secret = true; } // Whether EMS is negotiated may not change on renegotiation. if (ssl->s3->established_session != nullptr && hs->extended_master_secret != !!ssl->s3->established_session->extended_master_secret) { OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_EMS_MISMATCH); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } return true; } static bool ext_ems_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (ssl_protocol_version(hs->ssl) >= TLS1_3_VERSION) { return true; } if (contents == NULL) { return true; } if (CBS_len(contents) != 0) { return false; } hs->extended_master_secret = true; return true; } static bool ext_ems_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { if (!hs->extended_master_secret) { return true; } if (!CBB_add_u16(out, TLSEXT_TYPE_extended_master_secret) || !CBB_add_u16(out, 0 /* length */)) { return false; } return true; } // Session tickets. // // https://tools.ietf.org/html/rfc5077 static bool ext_ticket_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; // TLS 1.3 uses a different ticket extension. if (hs->min_version >= TLS1_3_VERSION || SSL_get_options(ssl) & SSL_OP_NO_TICKET) { return true; } Span ticket; // Renegotiation does not participate in session resumption. However, still // advertise the extension to avoid potentially breaking servers which carry // over the state from the previous handshake, such as OpenSSL servers // without upstream's 3c3f0259238594d77264a78944d409f2127642c4. if (!ssl->s3->initial_handshake_complete && ssl->session != nullptr && !ssl->session->ticket.empty() && // Don't send TLS 1.3 session tickets in the ticket extension. ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) { ticket = ssl->session->ticket; } CBB ticket_cbb; if (!CBB_add_u16(out, TLSEXT_TYPE_session_ticket) || !CBB_add_u16_length_prefixed(out, &ticket_cbb) || !CBB_add_bytes(&ticket_cbb, ticket.data(), ticket.size()) || !CBB_flush(out)) { return false; } return true; } static bool ext_ticket_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL) { return true; } if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return false; } // If |SSL_OP_NO_TICKET| is set then no extension will have been sent and // this function should never be called, even if the server tries to send the // extension. assert((SSL_get_options(ssl) & SSL_OP_NO_TICKET) == 0); if (CBS_len(contents) != 0) { return false; } hs->ticket_expected = true; return true; } static bool ext_ticket_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { if (!hs->ticket_expected) { return true; } // If |SSL_OP_NO_TICKET| is set, |ticket_expected| should never be true. assert((SSL_get_options(hs->ssl) & SSL_OP_NO_TICKET) == 0); if (!CBB_add_u16(out, TLSEXT_TYPE_session_ticket) || !CBB_add_u16(out, 0 /* length */)) { return false; } return true; } // Signature Algorithms. // // https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 static bool ext_sigalgs_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (hs->max_version < TLS1_2_VERSION) { return true; } // Prior to TLS 1.3, there was no way to signal different signature algorithm // preferences between the online signature and certificates. If we do not // send the signature_algorithms_cert extension, use the potentially more // restrictive certificate list. // // TODO(davidben): When TLS 1.3 is finalized, we can likely remove the TLS 1.3 // check both here and in signature_algorithms_cert. |hs->max_version| is not // the negotiated version. Rather the expectation is that any server consuming // signature algorithms added in TLS 1.3 will also know to look at // signature_algorithms_cert. For now, TLS 1.3 is not quite yet final and it // seems prudent to condition this new extension on it. bool for_certs = hs->max_version < TLS1_3_VERSION; CBB contents, sigalgs_cbb; if (!CBB_add_u16(out, TLSEXT_TYPE_signature_algorithms) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &sigalgs_cbb) || !tls12_add_verify_sigalgs(ssl, &sigalgs_cbb, for_certs) || !CBB_flush(out)) { return false; } return true; } static bool ext_sigalgs_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { hs->peer_sigalgs.Reset(); if (contents == NULL) { return true; } CBS supported_signature_algorithms; if (!CBS_get_u16_length_prefixed(contents, &supported_signature_algorithms) || CBS_len(contents) != 0 || !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) { return false; } return true; } // Signature Algorithms for Certificates. // // https://tools.ietf.org/html/rfc8446#section-4.2.3 static bool ext_sigalgs_cert_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; // If this extension is omitted, it defaults to the signature_algorithms // extension, so only emit it if the list is different. // // This extension is also new in TLS 1.3, so omit it if TLS 1.3 is disabled. // There is a corresponding version check in |ext_sigalgs_add_clienthello|. if (hs->max_version < TLS1_3_VERSION || !tls12_has_different_verify_sigalgs_for_certs(ssl)) { return true; } CBB contents, sigalgs_cbb; if (!CBB_add_u16(out, TLSEXT_TYPE_signature_algorithms_cert) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &sigalgs_cbb) || !tls12_add_verify_sigalgs(ssl, &sigalgs_cbb, true /* certs */) || !CBB_flush(out)) { return false; } return true; } // OCSP Stapling. // // https://tools.ietf.org/html/rfc6066#section-8 static bool ext_ocsp_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { if (!hs->config->ocsp_stapling_enabled) { return true; } CBB contents; if (!CBB_add_u16(out, TLSEXT_TYPE_status_request) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u8(&contents, TLSEXT_STATUSTYPE_ocsp) || !CBB_add_u16(&contents, 0 /* empty responder ID list */) || !CBB_add_u16(&contents, 0 /* empty request extensions */) || !CBB_flush(out)) { return false; } return true; } static bool ext_ocsp_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL) { return true; } // TLS 1.3 OCSP responses are included in the Certificate extensions. if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return false; } // OCSP stapling is forbidden on non-certificate ciphers. if (CBS_len(contents) != 0 || !ssl_cipher_uses_certificate_auth(hs->new_cipher)) { return false; } // Note this does not check for resumption in TLS 1.2. Sending // status_request here does not make sense, but OpenSSL does so and the // specification does not say anything. Tolerate it but ignore it. hs->certificate_status_expected = true; return true; } static bool ext_ocsp_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents == NULL) { return true; } uint8_t status_type; if (!CBS_get_u8(contents, &status_type)) { return false; } // We cannot decide whether OCSP stapling will occur yet because the correct // SSL_CTX might not have been selected. hs->ocsp_stapling_requested = status_type == TLSEXT_STATUSTYPE_ocsp; return true; } static bool ext_ocsp_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (ssl_protocol_version(ssl) >= TLS1_3_VERSION || !hs->ocsp_stapling_requested || hs->config->cert->ocsp_response == NULL || ssl->s3->session_reused || !ssl_cipher_uses_certificate_auth(hs->new_cipher)) { return true; } hs->certificate_status_expected = true; return CBB_add_u16(out, TLSEXT_TYPE_status_request) && CBB_add_u16(out, 0 /* length */); } // Next protocol negotiation. // // https://htmlpreview.github.io/?https://github.com/agl/technotes/blob/master/nextprotoneg.html static bool ext_npn_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (ssl->s3->initial_handshake_complete || ssl->ctx->next_proto_select_cb == NULL || SSL_is_dtls(ssl)) { return true; } if (!CBB_add_u16(out, TLSEXT_TYPE_next_proto_neg) || !CBB_add_u16(out, 0 /* length */)) { return false; } return true; } static bool ext_npn_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL) { return true; } if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return false; } // If any of these are false then we should never have sent the NPN // extension in the ClientHello and thus this function should never have been // called. assert(!ssl->s3->initial_handshake_complete); assert(!SSL_is_dtls(ssl)); assert(ssl->ctx->next_proto_select_cb != NULL); if (!ssl->s3->alpn_selected.empty()) { // NPN and ALPN may not be negotiated in the same connection. *out_alert = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_BOTH_NPN_AND_ALPN); return false; } const uint8_t *const orig_contents = CBS_data(contents); const size_t orig_len = CBS_len(contents); while (CBS_len(contents) != 0) { CBS proto; if (!CBS_get_u8_length_prefixed(contents, &proto) || CBS_len(&proto) == 0) { return false; } } uint8_t *selected; uint8_t selected_len; if (ssl->ctx->next_proto_select_cb( ssl, &selected, &selected_len, orig_contents, orig_len, ssl->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK || !ssl->s3->next_proto_negotiated.CopyFrom( MakeConstSpan(selected, selected_len))) { *out_alert = SSL_AD_INTERNAL_ERROR; return false; } hs->next_proto_neg_seen = true; return true; } static bool ext_npn_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return true; } if (contents != NULL && CBS_len(contents) != 0) { return false; } if (contents == NULL || ssl->s3->initial_handshake_complete || ssl->ctx->next_protos_advertised_cb == NULL || SSL_is_dtls(ssl)) { return true; } hs->next_proto_neg_seen = true; return true; } static bool ext_npn_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; // |next_proto_neg_seen| might have been cleared when an ALPN extension was // parsed. if (!hs->next_proto_neg_seen) { return true; } const uint8_t *npa; unsigned npa_len; if (ssl->ctx->next_protos_advertised_cb( ssl, &npa, &npa_len, ssl->ctx->next_protos_advertised_cb_arg) != SSL_TLSEXT_ERR_OK) { hs->next_proto_neg_seen = false; return true; } CBB contents; if (!CBB_add_u16(out, TLSEXT_TYPE_next_proto_neg) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_bytes(&contents, npa, npa_len) || !CBB_flush(out)) { return false; } return true; } // Signed certificate timestamps. // // https://tools.ietf.org/html/rfc6962#section-3.3.1 static bool ext_sct_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { if (!hs->config->signed_cert_timestamps_enabled) { return true; } if (!CBB_add_u16(out, TLSEXT_TYPE_certificate_timestamp) || !CBB_add_u16(out, 0 /* length */)) { return false; } return true; } static bool ext_sct_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL) { return true; } // TLS 1.3 SCTs are included in the Certificate extensions. if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { *out_alert = SSL_AD_DECODE_ERROR; return false; } // If this is false then we should never have sent the SCT extension in the // ClientHello and thus this function should never have been called. assert(hs->config->signed_cert_timestamps_enabled); if (!ssl_is_sct_list_valid(contents)) { *out_alert = SSL_AD_DECODE_ERROR; return false; } // Session resumption uses the original session information. The extension // should not be sent on resumption, but RFC 6962 did not make it a // requirement, so tolerate this. // // TODO(davidben): Enforce this anyway. if (!ssl->s3->session_reused) { hs->new_session->signed_cert_timestamp_list.reset( CRYPTO_BUFFER_new_from_CBS(contents, ssl->ctx->pool)); if (hs->new_session->signed_cert_timestamp_list == nullptr) { *out_alert = SSL_AD_INTERNAL_ERROR; return false; } } return true; } static bool ext_sct_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents == NULL) { return true; } if (CBS_len(contents) != 0) { return false; } hs->scts_requested = true; return true; } static bool ext_sct_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; // The extension shouldn't be sent when resuming sessions. if (ssl_protocol_version(ssl) >= TLS1_3_VERSION || ssl->s3->session_reused || hs->config->cert->signed_cert_timestamp_list == NULL) { return true; } CBB contents; return CBB_add_u16(out, TLSEXT_TYPE_certificate_timestamp) && CBB_add_u16_length_prefixed(out, &contents) && CBB_add_bytes( &contents, CRYPTO_BUFFER_data( hs->config->cert->signed_cert_timestamp_list.get()), CRYPTO_BUFFER_len( hs->config->cert->signed_cert_timestamp_list.get())) && CBB_flush(out); } // Application-level Protocol Negotiation. // // https://tools.ietf.org/html/rfc7301 static bool ext_alpn_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (hs->config->alpn_client_proto_list.empty() || ssl->s3->initial_handshake_complete) { return true; } CBB contents, proto_list; if (!CBB_add_u16(out, TLSEXT_TYPE_application_layer_protocol_negotiation) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &proto_list) || !CBB_add_bytes(&proto_list, hs->config->alpn_client_proto_list.data(), hs->config->alpn_client_proto_list.size()) || !CBB_flush(out)) { return false; } return true; } static bool ext_alpn_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL) { return true; } assert(!ssl->s3->initial_handshake_complete); assert(!hs->config->alpn_client_proto_list.empty()); if (hs->next_proto_neg_seen) { // NPN and ALPN may not be negotiated in the same connection. *out_alert = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_BOTH_NPN_AND_ALPN); return false; } // The extension data consists of a ProtocolNameList which must have // exactly one ProtocolName. Each of these is length-prefixed. CBS protocol_name_list, protocol_name; if (!CBS_get_u16_length_prefixed(contents, &protocol_name_list) || CBS_len(contents) != 0 || !CBS_get_u8_length_prefixed(&protocol_name_list, &protocol_name) || // Empty protocol names are forbidden. CBS_len(&protocol_name) == 0 || CBS_len(&protocol_name_list) != 0) { return false; } if (!ssl_is_alpn_protocol_allowed(hs, protocol_name)) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } if (!ssl->s3->alpn_selected.CopyFrom(protocol_name)) { *out_alert = SSL_AD_INTERNAL_ERROR; return false; } return true; } bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs, Span protocol) { if (hs->config->alpn_client_proto_list.empty()) { return false; } if (hs->ssl->ctx->allow_unknown_alpn_protos) { return true; } // Check that the protocol name is one of the ones we advertised. CBS client_protocol_name_list = MakeConstSpan(hs->config->alpn_client_proto_list), client_protocol_name; while (CBS_len(&client_protocol_name_list) > 0) { if (!CBS_get_u8_length_prefixed(&client_protocol_name_list, &client_protocol_name)) { return false; } if (client_protocol_name == protocol) { return true; } } return false; } bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert, const SSL_CLIENT_HELLO *client_hello) { SSL *const ssl = hs->ssl; CBS contents; if (ssl->ctx->alpn_select_cb == NULL || !ssl_client_hello_get_extension( client_hello, &contents, TLSEXT_TYPE_application_layer_protocol_negotiation)) { // Ignore ALPN if not configured or no extension was supplied. return true; } // ALPN takes precedence over NPN. hs->next_proto_neg_seen = false; CBS protocol_name_list; if (!CBS_get_u16_length_prefixed(&contents, &protocol_name_list) || CBS_len(&contents) != 0 || CBS_len(&protocol_name_list) < 2) { OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); *out_alert = SSL_AD_DECODE_ERROR; return false; } // Validate the protocol list. CBS protocol_name_list_copy = protocol_name_list; while (CBS_len(&protocol_name_list_copy) > 0) { CBS protocol_name; if (!CBS_get_u8_length_prefixed(&protocol_name_list_copy, &protocol_name) || // Empty protocol names are forbidden. CBS_len(&protocol_name) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); *out_alert = SSL_AD_DECODE_ERROR; return false; } } const uint8_t *selected; uint8_t selected_len; if (ssl->ctx->alpn_select_cb( ssl, &selected, &selected_len, CBS_data(&protocol_name_list), CBS_len(&protocol_name_list), ssl->ctx->alpn_select_cb_arg) == SSL_TLSEXT_ERR_OK) { if (selected_len == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL); *out_alert = SSL_AD_INTERNAL_ERROR; return false; } if (!ssl->s3->alpn_selected.CopyFrom( MakeConstSpan(selected, selected_len))) { *out_alert = SSL_AD_INTERNAL_ERROR; return false; } } return true; } static bool ext_alpn_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (ssl->s3->alpn_selected.empty()) { return true; } CBB contents, proto_list, proto; if (!CBB_add_u16(out, TLSEXT_TYPE_application_layer_protocol_negotiation) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &proto_list) || !CBB_add_u8_length_prefixed(&proto_list, &proto) || !CBB_add_bytes(&proto, ssl->s3->alpn_selected.data(), ssl->s3->alpn_selected.size()) || !CBB_flush(out)) { return false; } return true; } // Channel ID. // // https://tools.ietf.org/html/draft-balfanz-tls-channelid-01 static void ext_channel_id_init(SSL_HANDSHAKE *hs) { hs->ssl->s3->channel_id_valid = false; } static bool ext_channel_id_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (!hs->config->channel_id_enabled || SSL_is_dtls(ssl)) { return true; } if (!CBB_add_u16(out, TLSEXT_TYPE_channel_id) || !CBB_add_u16(out, 0 /* length */)) { return false; } return true; } static bool ext_channel_id_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL) { return true; } assert(!SSL_is_dtls(ssl)); assert(hs->config->channel_id_enabled); if (CBS_len(contents) != 0) { return false; } ssl->s3->channel_id_valid = true; return true; } static bool ext_channel_id_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL || !hs->config->channel_id_enabled || SSL_is_dtls(ssl)) { return true; } if (CBS_len(contents) != 0) { return false; } ssl->s3->channel_id_valid = true; return true; } static bool ext_channel_id_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (!ssl->s3->channel_id_valid) { return true; } if (!CBB_add_u16(out, TLSEXT_TYPE_channel_id) || !CBB_add_u16(out, 0 /* length */)) { return false; } return true; } // Secure Real-time Transport Protocol (SRTP) extension. // // https://tools.ietf.org/html/rfc5764 static void ext_srtp_init(SSL_HANDSHAKE *hs) { hs->ssl->s3->srtp_profile = NULL; } static bool ext_srtp_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; STACK_OF(SRTP_PROTECTION_PROFILE) *profiles = SSL_get_srtp_profiles(ssl); if (profiles == NULL || sk_SRTP_PROTECTION_PROFILE_num(profiles) == 0) { return true; } CBB contents, profile_ids; if (!CBB_add_u16(out, TLSEXT_TYPE_srtp) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &profile_ids)) { return false; } for (const SRTP_PROTECTION_PROFILE *profile : profiles) { if (!CBB_add_u16(&profile_ids, profile->id)) { return false; } } if (!CBB_add_u8(&contents, 0 /* empty use_mki value */) || !CBB_flush(out)) { return false; } return true; } static bool ext_srtp_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL) { return true; } // The extension consists of a u16-prefixed profile ID list containing a // single uint16_t profile ID, then followed by a u8-prefixed srtp_mki field. // // See https://tools.ietf.org/html/rfc5764#section-4.1.1 CBS profile_ids, srtp_mki; uint16_t profile_id; if (!CBS_get_u16_length_prefixed(contents, &profile_ids) || !CBS_get_u16(&profile_ids, &profile_id) || CBS_len(&profile_ids) != 0 || !CBS_get_u8_length_prefixed(contents, &srtp_mki) || CBS_len(contents) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST); return false; } if (CBS_len(&srtp_mki) != 0) { // Must be no MKI, since we never offer one. OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_MKI_VALUE); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } STACK_OF(SRTP_PROTECTION_PROFILE) *profiles = SSL_get_srtp_profiles(ssl); // Check to see if the server gave us something we support (and presumably // offered). for (const SRTP_PROTECTION_PROFILE *profile : profiles) { if (profile->id == profile_id) { ssl->s3->srtp_profile = profile; return true; } } OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } static bool ext_srtp_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL) { return true; } CBS profile_ids, srtp_mki; if (!CBS_get_u16_length_prefixed(contents, &profile_ids) || CBS_len(&profile_ids) < 2 || !CBS_get_u8_length_prefixed(contents, &srtp_mki) || CBS_len(contents) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST); return false; } // Discard the MKI value for now. const STACK_OF(SRTP_PROTECTION_PROFILE) *server_profiles = SSL_get_srtp_profiles(ssl); // Pick the server's most preferred profile. for (const SRTP_PROTECTION_PROFILE *server_profile : server_profiles) { CBS profile_ids_tmp; CBS_init(&profile_ids_tmp, CBS_data(&profile_ids), CBS_len(&profile_ids)); while (CBS_len(&profile_ids_tmp) > 0) { uint16_t profile_id; if (!CBS_get_u16(&profile_ids_tmp, &profile_id)) { return false; } if (server_profile->id == profile_id) { ssl->s3->srtp_profile = server_profile; return true; } } } return true; } static bool ext_srtp_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (ssl->s3->srtp_profile == NULL) { return true; } CBB contents, profile_ids; if (!CBB_add_u16(out, TLSEXT_TYPE_srtp) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &profile_ids) || !CBB_add_u16(&profile_ids, ssl->s3->srtp_profile->id) || !CBB_add_u8(&contents, 0 /* empty MKI */) || !CBB_flush(out)) { return false; } return true; } // EC point formats. // // https://tools.ietf.org/html/rfc4492#section-5.1.2 static bool ext_ec_point_add_extension(SSL_HANDSHAKE *hs, CBB *out) { CBB contents, formats; if (!CBB_add_u16(out, TLSEXT_TYPE_ec_point_formats) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u8_length_prefixed(&contents, &formats) || !CBB_add_u8(&formats, TLSEXT_ECPOINTFORMAT_uncompressed) || !CBB_flush(out)) { return false; } return true; } static bool ext_ec_point_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { // The point format extension is unnecessary in TLS 1.3. if (hs->min_version >= TLS1_3_VERSION) { return true; } return ext_ec_point_add_extension(hs, out); } static bool ext_ec_point_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents == NULL) { return true; } if (ssl_protocol_version(hs->ssl) >= TLS1_3_VERSION) { return false; } CBS ec_point_format_list; if (!CBS_get_u8_length_prefixed(contents, &ec_point_format_list) || CBS_len(contents) != 0) { return false; } // Per RFC 4492, section 5.1.2, implementations MUST support the uncompressed // point format. if (OPENSSL_memchr(CBS_data(&ec_point_format_list), TLSEXT_ECPOINTFORMAT_uncompressed, CBS_len(&ec_point_format_list)) == NULL) { *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } return true; } static bool ext_ec_point_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (ssl_protocol_version(hs->ssl) >= TLS1_3_VERSION) { return true; } return ext_ec_point_parse_serverhello(hs, out_alert, contents); } static bool ext_ec_point_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { return true; } const uint32_t alg_k = hs->new_cipher->algorithm_mkey; const uint32_t alg_a = hs->new_cipher->algorithm_auth; const bool using_ecc = (alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA); if (!using_ecc) { return true; } return ext_ec_point_add_extension(hs, out); } // Pre Shared Key // // https://tools.ietf.org/html/rfc8446#section-4.2.11 static size_t ext_pre_shared_key_clienthello_length(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; if (hs->max_version < TLS1_3_VERSION || ssl->session == nullptr || ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) { return 0; } size_t binder_len = EVP_MD_size(ssl_session_get_digest(ssl->session.get())); return 15 + ssl->session->ticket.size() + binder_len; } static bool ext_pre_shared_key_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; hs->needs_psk_binder = false; if (hs->max_version < TLS1_3_VERSION || ssl->session == nullptr || ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) { return true; } // Per RFC 8446 section 4.1.4, skip offering the session if the selected // cipher in HelloRetryRequest does not match. This avoids performing the // transcript hash transformation for multiple hashes. if (hs->received_hello_retry_request && ssl->session->cipher->algorithm_prf != hs->new_cipher->algorithm_prf) { return true; } struct OPENSSL_timeval now; ssl_get_current_time(ssl, &now); uint32_t ticket_age = 1000 * (now.tv_sec - ssl->session->time); uint32_t obfuscated_ticket_age = ticket_age + ssl->session->ticket_age_add; // Fill in a placeholder zero binder of the appropriate length. It will be // computed and filled in later after length prefixes are computed. uint8_t zero_binder[EVP_MAX_MD_SIZE] = {0}; size_t binder_len = EVP_MD_size(ssl_session_get_digest(ssl->session.get())); CBB contents, identity, ticket, binders, binder; if (!CBB_add_u16(out, TLSEXT_TYPE_pre_shared_key) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &identity) || !CBB_add_u16_length_prefixed(&identity, &ticket) || !CBB_add_bytes(&ticket, ssl->session->ticket.data(), ssl->session->ticket.size()) || !CBB_add_u32(&identity, obfuscated_ticket_age) || !CBB_add_u16_length_prefixed(&contents, &binders) || !CBB_add_u8_length_prefixed(&binders, &binder) || !CBB_add_bytes(&binder, zero_binder, binder_len)) { return false; } hs->needs_psk_binder = true; return CBB_flush(out); } bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { uint16_t psk_id; if (!CBS_get_u16(contents, &psk_id) || CBS_len(contents) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); *out_alert = SSL_AD_DECODE_ERROR; return false; } // We only advertise one PSK identity, so the only legal index is zero. if (psk_id != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); *out_alert = SSL_AD_UNKNOWN_PSK_IDENTITY; return false; } return true; } bool ssl_ext_pre_shared_key_parse_clienthello( SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders, uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, const SSL_CLIENT_HELLO *client_hello, CBS *contents) { // Verify that the pre_shared_key extension is the last extension in // ClientHello. if (CBS_data(contents) + CBS_len(contents) != client_hello->extensions + client_hello->extensions_len) { OPENSSL_PUT_ERROR(SSL, SSL_R_PRE_SHARED_KEY_MUST_BE_LAST); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } // We only process the first PSK identity since we don't support pure PSK. CBS identities, binders; if (!CBS_get_u16_length_prefixed(contents, &identities) || !CBS_get_u16_length_prefixed(&identities, out_ticket) || !CBS_get_u32(&identities, out_obfuscated_ticket_age) || !CBS_get_u16_length_prefixed(contents, &binders) || CBS_len(&binders) == 0 || CBS_len(contents) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); *out_alert = SSL_AD_DECODE_ERROR; return false; } *out_binders = binders; // Check the syntax of the remaining identities, but do not process them. size_t num_identities = 1; while (CBS_len(&identities) != 0) { CBS unused_ticket; uint32_t unused_obfuscated_ticket_age; if (!CBS_get_u16_length_prefixed(&identities, &unused_ticket) || !CBS_get_u32(&identities, &unused_obfuscated_ticket_age)) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); *out_alert = SSL_AD_DECODE_ERROR; return false; } num_identities++; } // Check the syntax of the binders. The value will be checked later if // resuming. size_t num_binders = 0; while (CBS_len(&binders) != 0) { CBS binder; if (!CBS_get_u8_length_prefixed(&binders, &binder)) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); *out_alert = SSL_AD_DECODE_ERROR; return false; } num_binders++; } if (num_identities != num_binders) { OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_BINDER_COUNT_MISMATCH); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } return true; } bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { if (!hs->ssl->s3->session_reused) { return true; } CBB contents; if (!CBB_add_u16(out, TLSEXT_TYPE_pre_shared_key) || !CBB_add_u16_length_prefixed(out, &contents) || // We only consider the first identity for resumption !CBB_add_u16(&contents, 0) || !CBB_flush(out)) { return false; } return true; } // Pre-Shared Key Exchange Modes // // https://tools.ietf.org/html/rfc8446#section-4.2.9 static bool ext_psk_key_exchange_modes_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { if (hs->max_version < TLS1_3_VERSION) { return true; } CBB contents, ke_modes; if (!CBB_add_u16(out, TLSEXT_TYPE_psk_key_exchange_modes) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u8_length_prefixed(&contents, &ke_modes) || !CBB_add_u8(&ke_modes, SSL_PSK_DHE_KE)) { return false; } return CBB_flush(out); } static bool ext_psk_key_exchange_modes_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents == NULL) { return true; } CBS ke_modes; if (!CBS_get_u8_length_prefixed(contents, &ke_modes) || CBS_len(&ke_modes) == 0 || CBS_len(contents) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return false; } // We only support tickets with PSK_DHE_KE. hs->accept_psk_mode = OPENSSL_memchr(CBS_data(&ke_modes), SSL_PSK_DHE_KE, CBS_len(&ke_modes)) != NULL; return true; } // Early Data Indication // // https://tools.ietf.org/html/rfc8446#section-4.2.10 static bool ext_early_data_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; // The second ClientHello never offers early data, and we must have already // filled in |early_data_reason| by this point. if (hs->received_hello_retry_request) { assert(ssl->s3->early_data_reason != ssl_early_data_unknown); return true; } if (!ssl->enable_early_data) { ssl->s3->early_data_reason = ssl_early_data_disabled; return true; } if (hs->max_version < TLS1_3_VERSION) { // We discard inapplicable sessions, so this is redundant with the session // checks below, but we check give a more useful reason. ssl->s3->early_data_reason = ssl_early_data_protocol_version; return true; } if (ssl->session == nullptr) { ssl->s3->early_data_reason = ssl_early_data_no_session_offered; return true; } if (ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION || ssl->session->ticket_max_early_data == 0) { ssl->s3->early_data_reason = ssl_early_data_unsupported_for_session; return true; } // In case ALPN preferences changed since this session was established, avoid // reporting a confusing value in |SSL_get0_alpn_selected| and sending early // data we know will be rejected. if (!ssl->session->early_alpn.empty() && !ssl_is_alpn_protocol_allowed(hs, ssl->session->early_alpn)) { ssl->s3->early_data_reason = ssl_early_data_alpn_mismatch; return true; } // |early_data_reason| will be filled in later when the server responds. hs->early_data_offered = true; if (!CBB_add_u16(out, TLSEXT_TYPE_early_data) || !CBB_add_u16(out, 0) || !CBB_flush(out)) { return false; } return true; } static bool ext_early_data_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL) { if (hs->early_data_offered && !hs->received_hello_retry_request) { ssl->s3->early_data_reason = ssl->s3->session_reused ? ssl_early_data_peer_declined : ssl_early_data_session_not_resumed; } else { // We already filled in |early_data_reason| when declining to offer 0-RTT // or handling the implicit HelloRetryRequest reject. assert(ssl->s3->early_data_reason != ssl_early_data_unknown); } return true; } // If we received an HRR, the second ClientHello never offers early data, so // the extensions logic will automatically reject early data extensions as // unsolicited. This covered by the ServerAcceptsEarlyDataOnHRR test. assert(!hs->received_hello_retry_request); if (CBS_len(contents) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return false; } if (!ssl->s3->session_reused) { *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); return false; } ssl->s3->early_data_reason = ssl_early_data_accepted; ssl->s3->early_data_accepted = true; return true; } static bool ext_early_data_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == NULL || ssl_protocol_version(ssl) < TLS1_3_VERSION) { return true; } if (CBS_len(contents) != 0) { *out_alert = SSL_AD_DECODE_ERROR; return false; } hs->early_data_offered = true; return true; } static bool ext_early_data_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { if (!hs->ssl->s3->early_data_accepted) { return true; } if (!CBB_add_u16(out, TLSEXT_TYPE_early_data) || !CBB_add_u16(out, 0) || !CBB_flush(out)) { return false; } return true; } // Key Share // // https://tools.ietf.org/html/rfc8446#section-4.2.8 static bool ext_key_share_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (hs->max_version < TLS1_3_VERSION) { return true; } CBB contents, kse_bytes; if (!CBB_add_u16(out, TLSEXT_TYPE_key_share) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &kse_bytes)) { return false; } uint16_t group_id = hs->retry_group; uint16_t second_group_id = 0; if (hs->received_hello_retry_request) { // We received a HelloRetryRequest without a new curve, so there is no new // share to append. Leave |hs->key_share| as-is. if (group_id == 0 && !CBB_add_bytes(&kse_bytes, hs->key_share_bytes.data(), hs->key_share_bytes.size())) { return false; } hs->key_share_bytes.Reset(); if (group_id == 0) { return CBB_flush(out); } } else { // Add a fake group. See draft-davidben-tls-grease-01. if (ssl->ctx->grease_enabled && (!CBB_add_u16(&kse_bytes, ssl_get_grease_value(hs, ssl_grease_group)) || !CBB_add_u16(&kse_bytes, 1 /* length */) || !CBB_add_u8(&kse_bytes, 0 /* one byte key share */))) { return false; } // Predict the most preferred group. Span groups = tls1_get_grouplist(hs); if (groups.empty()) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_GROUPS_SPECIFIED); return false; } group_id = groups[0]; if (is_post_quantum_group(group_id) && groups.size() >= 2) { // CECPQ2(b) is not sent as the only initial key share. We'll include the // 2nd preference group too to avoid round-trips. second_group_id = groups[1]; assert(second_group_id != group_id); } } CBB key_exchange; hs->key_shares[0] = SSLKeyShare::Create(group_id); if (!hs->key_shares[0] || !CBB_add_u16(&kse_bytes, group_id) || !CBB_add_u16_length_prefixed(&kse_bytes, &key_exchange) || !hs->key_shares[0]->Offer(&key_exchange) || !CBB_flush(&kse_bytes)) { return false; } if (second_group_id != 0) { hs->key_shares[1] = SSLKeyShare::Create(second_group_id); if (!hs->key_shares[1] || !CBB_add_u16(&kse_bytes, second_group_id) || !CBB_add_u16_length_prefixed(&kse_bytes, &key_exchange) || !hs->key_shares[1]->Offer(&key_exchange) || !CBB_flush(&kse_bytes)) { return false; } } // Save the contents of the extension to repeat it in the second // ClientHello. if (!hs->received_hello_retry_request && !hs->key_share_bytes.CopyFrom( MakeConstSpan(CBB_data(&kse_bytes), CBB_len(&kse_bytes)))) { return false; } return CBB_flush(out); } bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, Array *out_secret, uint8_t *out_alert, CBS *contents) { CBS peer_key; uint16_t group_id; if (!CBS_get_u16(contents, &group_id) || !CBS_get_u16_length_prefixed(contents, &peer_key) || CBS_len(contents) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); *out_alert = SSL_AD_DECODE_ERROR; return false; } SSLKeyShare *key_share = hs->key_shares[0].get(); if (key_share->GroupID() != group_id) { if (!hs->key_shares[1] || hs->key_shares[1]->GroupID() != group_id) { *out_alert = SSL_AD_ILLEGAL_PARAMETER; OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE); return false; } key_share = hs->key_shares[1].get(); } if (!key_share->Finish(out_secret, out_alert, peer_key)) { *out_alert = SSL_AD_INTERNAL_ERROR; return false; } hs->new_session->group_id = group_id; hs->key_shares[0].reset(); hs->key_shares[1].reset(); return true; } bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found, Array *out_secret, uint8_t *out_alert, CBS *contents) { uint16_t group_id; CBS key_shares; if (!tls1_get_shared_group(hs, &group_id)) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_GROUP); *out_alert = SSL_AD_HANDSHAKE_FAILURE; return false; } if (!CBS_get_u16_length_prefixed(contents, &key_shares) || CBS_len(contents) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return false; } // Find the corresponding key share. CBS peer_key; CBS_init(&peer_key, NULL, 0); while (CBS_len(&key_shares) > 0) { uint16_t id; CBS peer_key_tmp; if (!CBS_get_u16(&key_shares, &id) || !CBS_get_u16_length_prefixed(&key_shares, &peer_key_tmp) || CBS_len(&peer_key_tmp) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return false; } if (id == group_id) { if (CBS_len(&peer_key) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_KEY_SHARE); *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } peer_key = peer_key_tmp; // Continue parsing the structure to keep peers honest. } } if (CBS_len(&peer_key) == 0) { *out_found = false; out_secret->Reset(); return true; } // Compute the DH secret. Array secret; ScopedCBB public_key; UniquePtr key_share = SSLKeyShare::Create(group_id); if (!key_share || !CBB_init(public_key.get(), 32) || !key_share->Accept(public_key.get(), &secret, out_alert, peer_key) || !CBBFinishArray(public_key.get(), &hs->ecdh_public_key)) { *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } *out_secret = std::move(secret); *out_found = true; return true; } bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { uint16_t group_id; CBB kse_bytes, public_key; if (!tls1_get_shared_group(hs, &group_id) || !CBB_add_u16(out, TLSEXT_TYPE_key_share) || !CBB_add_u16_length_prefixed(out, &kse_bytes) || !CBB_add_u16(&kse_bytes, group_id) || !CBB_add_u16_length_prefixed(&kse_bytes, &public_key) || !CBB_add_bytes(&public_key, hs->ecdh_public_key.data(), hs->ecdh_public_key.size()) || !CBB_flush(out)) { return false; } hs->ecdh_public_key.Reset(); hs->new_session->group_id = group_id; return true; } // Supported Versions // // https://tools.ietf.org/html/rfc8446#section-4.2.1 static bool ext_supported_versions_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (hs->max_version <= TLS1_2_VERSION) { return true; } CBB contents, versions; if (!CBB_add_u16(out, TLSEXT_TYPE_supported_versions) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u8_length_prefixed(&contents, &versions)) { return false; } // Add a fake version. See draft-davidben-tls-grease-01. if (ssl->ctx->grease_enabled && !CBB_add_u16(&versions, ssl_get_grease_value(hs, ssl_grease_version))) { return false; } if (!ssl_add_supported_versions(hs, &versions) || !CBB_flush(out)) { return false; } return true; } // Cookie // // https://tools.ietf.org/html/rfc8446#section-4.2.2 static bool ext_cookie_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { if (hs->cookie.empty()) { return true; } CBB contents, cookie; if (!CBB_add_u16(out, TLSEXT_TYPE_cookie) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &cookie) || !CBB_add_bytes(&cookie, hs->cookie.data(), hs->cookie.size()) || !CBB_flush(out)) { return false; } // The cookie is no longer needed in memory. hs->cookie.Reset(); return true; } // Supported Groups // // https://tools.ietf.org/html/rfc4492#section-5.1.1 // https://tools.ietf.org/html/rfc8446#section-4.2.7 static bool ext_supported_groups_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; CBB contents, groups_bytes; if (!CBB_add_u16(out, TLSEXT_TYPE_supported_groups) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16_length_prefixed(&contents, &groups_bytes)) { return false; } // Add a fake group. See draft-davidben-tls-grease-01. if (ssl->ctx->grease_enabled && !CBB_add_u16(&groups_bytes, ssl_get_grease_value(hs, ssl_grease_group))) { return false; } for (uint16_t group : tls1_get_grouplist(hs)) { if (is_post_quantum_group(group) && hs->max_version < TLS1_3_VERSION) { continue; } if (!CBB_add_u16(&groups_bytes, group)) { return false; } } return CBB_flush(out); } static bool ext_supported_groups_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { // This extension is not expected to be echoed by servers in TLS 1.2, but some // BigIP servers send it nonetheless, so do not enforce this. return true; } static bool parse_u16_array(const CBS *cbs, Array *out) { CBS copy = *cbs; if ((CBS_len(©) & 1) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); return false; } Array ret; if (!ret.Init(CBS_len(©) / 2)) { return false; } for (size_t i = 0; i < ret.size(); i++) { if (!CBS_get_u16(©, &ret[i])) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } } assert(CBS_len(©) == 0); *out = std::move(ret); return 1; } static bool ext_supported_groups_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents == NULL) { return true; } CBS supported_group_list; if (!CBS_get_u16_length_prefixed(contents, &supported_group_list) || CBS_len(&supported_group_list) == 0 || CBS_len(contents) != 0 || !parse_u16_array(&supported_group_list, &hs->peer_supported_group_list)) { return false; } return true; } // Token Binding // // https://tools.ietf.org/html/draft-ietf-tokbind-negotiation-10 // The Token Binding version number currently matches the draft number of // draft-ietf-tokbind-protocol, and when published as an RFC it will be 0x0100. // Since there are no wire changes to the protocol from draft 13 through the // current draft (16), this implementation supports all versions in that range. static uint16_t kTokenBindingMaxVersion = 16; static uint16_t kTokenBindingMinVersion = 13; static bool ext_token_binding_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (hs->config->token_binding_params.empty() || SSL_is_dtls(ssl)) { return true; } CBB contents, params; if (!CBB_add_u16(out, TLSEXT_TYPE_token_binding) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16(&contents, kTokenBindingMaxVersion) || !CBB_add_u8_length_prefixed(&contents, ¶ms) || !CBB_add_bytes(¶ms, hs->config->token_binding_params.data(), hs->config->token_binding_params.size()) || !CBB_flush(out)) { return false; } return true; } static bool ext_token_binding_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == nullptr) { return true; } CBS params_list; uint16_t version; uint8_t param; if (!CBS_get_u16(contents, &version) || !CBS_get_u8_length_prefixed(contents, ¶ms_list) || !CBS_get_u8(¶ms_list, ¶m) || CBS_len(¶ms_list) > 0 || CBS_len(contents) > 0) { *out_alert = SSL_AD_DECODE_ERROR; return false; } // The server-negotiated version must be less than or equal to our version. if (version > kTokenBindingMaxVersion) { *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } // If the server-selected version is less than what we support, then Token // Binding wasn't negotiated (but the extension was parsed successfully). if (version < kTokenBindingMinVersion) { return true; } for (uint8_t config_param : hs->config->token_binding_params) { if (param == config_param) { ssl->s3->negotiated_token_binding_param = param; ssl->s3->token_binding_negotiated = true; return true; } } *out_alert = SSL_AD_ILLEGAL_PARAMETER; return false; } // select_tb_param looks for the first token binding param in // |hs->ssl->token_binding_params| that is also in |params| and puts it in // |hs->ssl->negotiated_token_binding_param|. It returns true if a token binding // param is found, and false otherwise. static bool select_tb_param(SSL_HANDSHAKE *hs, Span peer_params) { for (uint8_t tb_param : hs->config->token_binding_params) { for (uint8_t peer_param : peer_params) { if (tb_param == peer_param) { hs->ssl->s3->negotiated_token_binding_param = tb_param; return true; } } } return false; } static bool ext_token_binding_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == nullptr || hs->config->token_binding_params.empty()) { return true; } CBS params; uint16_t version; if (!CBS_get_u16(contents, &version) || !CBS_get_u8_length_prefixed(contents, ¶ms) || CBS_len(¶ms) == 0 || CBS_len(contents) > 0) { *out_alert = SSL_AD_DECODE_ERROR; return false; } // If the client-selected version is less than what we support, then Token // Binding wasn't negotiated (but the extension was parsed successfully). if (version < kTokenBindingMinVersion) { return true; } // If the client-selected version is higher than we support, use our max // version. Otherwise, use the client's version. hs->negotiated_token_binding_version = std::min(version, kTokenBindingMaxVersion); if (!select_tb_param(hs, params)) { return true; } ssl->s3->token_binding_negotiated = true; return true; } static bool ext_token_binding_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; if (!ssl->s3->token_binding_negotiated) { return true; } CBB contents, params; if (!CBB_add_u16(out, TLSEXT_TYPE_token_binding) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u16(&contents, hs->negotiated_token_binding_version) || !CBB_add_u8_length_prefixed(&contents, ¶ms) || !CBB_add_u8(¶ms, ssl->s3->negotiated_token_binding_param) || !CBB_flush(out)) { return false; } return true; } // QUIC Transport Parameters static bool ext_quic_transport_params_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { if (hs->config->quic_transport_params.empty() || hs->max_version <= TLS1_2_VERSION) { return true; } CBB contents; if (!CBB_add_u16(out, TLSEXT_TYPE_quic_transport_parameters) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_bytes(&contents, hs->config->quic_transport_params.data(), hs->config->quic_transport_params.size()) || !CBB_flush(out)) { return false; } return true; } static bool ext_quic_transport_params_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (contents == nullptr) { return true; } // QUIC requires TLS 1.3. if (ssl_protocol_version(ssl) < TLS1_3_VERSION) { *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; return false; } return ssl->s3->peer_quic_transport_params.CopyFrom(*contents); } static bool ext_quic_transport_params_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { SSL *const ssl = hs->ssl; if (!contents || hs->config->quic_transport_params.empty()) { return true; } // Ignore the extension before TLS 1.3. if (ssl_protocol_version(ssl) < TLS1_3_VERSION) { return true; } return ssl->s3->peer_quic_transport_params.CopyFrom(*contents); } static bool ext_quic_transport_params_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { if (hs->config->quic_transport_params.empty()) { return true; } CBB contents; if (!CBB_add_u16(out, TLSEXT_TYPE_quic_transport_parameters) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_bytes(&contents, hs->config->quic_transport_params.data(), hs->config->quic_transport_params.size()) || !CBB_flush(out)) { return false; } return true; } // Delegated credentials. // // https://tools.ietf.org/html/draft-ietf-tls-subcerts static bool ext_delegated_credential_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { return true; } static bool ext_delegated_credential_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { assert(TLSEXT_TYPE_delegated_credential == 0xff02); // TODO: Check that the extension is empty. // // As of draft-03, the client sends an empty extension in order indicate // support for delegated credentials. This could change, however, since the // spec is not yet finalized. This assertion is here to remind us to enforce // this check once the extension ID is assigned. if (contents == nullptr || ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) { // Don't use delegated credentials unless we're negotiating TLS 1.3 or // higher. return true; } hs->delegated_credential_requested = true; return true; } // Certificate compression static bool cert_compression_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { bool first = true; CBB contents, algs; for (const auto *alg : hs->ssl->ctx->cert_compression_algs.get()) { if (alg->decompress == nullptr) { continue; } if (first && (!CBB_add_u16(out, TLSEXT_TYPE_cert_compression) || !CBB_add_u16_length_prefixed(out, &contents) || !CBB_add_u8_length_prefixed(&contents, &algs))) { return false; } first = false; if (!CBB_add_u16(&algs, alg->alg_id)) { return false; } } return first || CBB_flush(out); } static bool cert_compression_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents == nullptr) { return true; } // The server may not echo this extension. Any server to client negotiation is // advertised in the CertificateRequest message. return false; } static bool cert_compression_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents == nullptr) { return true; } const size_t num_algs = sk_CertCompressionAlg_num(hs->ssl->ctx->cert_compression_algs.get()); CBS alg_ids; if (!CBS_get_u8_length_prefixed(contents, &alg_ids) || CBS_len(contents) != 0 || CBS_len(&alg_ids) == 0 || CBS_len(&alg_ids) % 2 == 1) { return false; } const size_t num_given_alg_ids = CBS_len(&alg_ids) / 2; Array given_alg_ids; if (!given_alg_ids.Init(num_given_alg_ids)) { return false; } size_t best_index = num_algs; size_t given_alg_idx = 0; while (CBS_len(&alg_ids) > 0) { uint16_t alg_id; if (!CBS_get_u16(&alg_ids, &alg_id)) { return false; } given_alg_ids[given_alg_idx++] = alg_id; for (size_t i = 0; i < num_algs; i++) { const auto *alg = sk_CertCompressionAlg_value( hs->ssl->ctx->cert_compression_algs.get(), i); if (alg->alg_id == alg_id && alg->compress != nullptr) { if (i < best_index) { best_index = i; } break; } } } qsort(given_alg_ids.data(), given_alg_ids.size(), sizeof(uint16_t), compare_uint16_t); for (size_t i = 1; i < num_given_alg_ids; i++) { if (given_alg_ids[i - 1] == given_alg_ids[i]) { return false; } } if (best_index < num_algs && ssl_protocol_version(hs->ssl) >= TLS1_3_VERSION) { hs->cert_compression_negotiated = true; hs->cert_compression_alg_id = sk_CertCompressionAlg_value(hs->ssl->ctx->cert_compression_algs.get(), best_index) ->alg_id; } return true; } static bool cert_compression_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { return true; } // Post-quantum experiment signal // // This extension may be used in order to identify a control group for // experimenting with post-quantum key exchange algorithms. static bool ext_pq_experiment_signal_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) { if (hs->ssl->ctx->pq_experiment_signal && (!CBB_add_u16(out, TLSEXT_TYPE_pq_experiment_signal) || !CBB_add_u16(out, 0))) { return false; } return true; } static bool ext_pq_experiment_signal_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents == nullptr) { return true; } if (!hs->ssl->ctx->pq_experiment_signal || CBS_len(contents) != 0) { return false; } hs->ssl->s3->pq_experiment_signal_seen = true; return true; } static bool ext_pq_experiment_signal_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents) { if (contents == nullptr) { return true; } if (CBS_len(contents) != 0) { return false; } if (hs->ssl->ctx->pq_experiment_signal) { hs->ssl->s3->pq_experiment_signal_seen = true; } return true; } static bool ext_pq_experiment_signal_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) { if (hs->ssl->s3->pq_experiment_signal_seen && (!CBB_add_u16(out, TLSEXT_TYPE_pq_experiment_signal) || !CBB_add_u16(out, 0))) { return false; } return true; } // kExtensions contains all the supported extensions. static const struct tls_extension kExtensions[] = { { TLSEXT_TYPE_server_name, NULL, ext_sni_add_clienthello, ext_sni_parse_serverhello, ext_sni_parse_clienthello, ext_sni_add_serverhello, }, { TLSEXT_TYPE_extended_master_secret, NULL, ext_ems_add_clienthello, ext_ems_parse_serverhello, ext_ems_parse_clienthello, ext_ems_add_serverhello, }, { TLSEXT_TYPE_renegotiate, NULL, ext_ri_add_clienthello, ext_ri_parse_serverhello, ext_ri_parse_clienthello, ext_ri_add_serverhello, }, { TLSEXT_TYPE_supported_groups, NULL, ext_supported_groups_add_clienthello, ext_supported_groups_parse_serverhello, ext_supported_groups_parse_clienthello, dont_add_serverhello, }, { TLSEXT_TYPE_ec_point_formats, NULL, ext_ec_point_add_clienthello, ext_ec_point_parse_serverhello, ext_ec_point_parse_clienthello, ext_ec_point_add_serverhello, }, { TLSEXT_TYPE_session_ticket, NULL, ext_ticket_add_clienthello, ext_ticket_parse_serverhello, // Ticket extension client parsing is handled in ssl_session.c ignore_parse_clienthello, ext_ticket_add_serverhello, }, { TLSEXT_TYPE_application_layer_protocol_negotiation, NULL, ext_alpn_add_clienthello, ext_alpn_parse_serverhello, // ALPN is negotiated late in |ssl_negotiate_alpn|. ignore_parse_clienthello, ext_alpn_add_serverhello, }, { TLSEXT_TYPE_status_request, NULL, ext_ocsp_add_clienthello, ext_ocsp_parse_serverhello, ext_ocsp_parse_clienthello, ext_ocsp_add_serverhello, }, { TLSEXT_TYPE_signature_algorithms, NULL, ext_sigalgs_add_clienthello, forbid_parse_serverhello, ext_sigalgs_parse_clienthello, dont_add_serverhello, }, { TLSEXT_TYPE_signature_algorithms_cert, NULL, ext_sigalgs_cert_add_clienthello, forbid_parse_serverhello, ignore_parse_clienthello, dont_add_serverhello, }, { TLSEXT_TYPE_next_proto_neg, NULL, ext_npn_add_clienthello, ext_npn_parse_serverhello, ext_npn_parse_clienthello, ext_npn_add_serverhello, }, { TLSEXT_TYPE_certificate_timestamp, NULL, ext_sct_add_clienthello, ext_sct_parse_serverhello, ext_sct_parse_clienthello, ext_sct_add_serverhello, }, { TLSEXT_TYPE_channel_id, ext_channel_id_init, ext_channel_id_add_clienthello, ext_channel_id_parse_serverhello, ext_channel_id_parse_clienthello, ext_channel_id_add_serverhello, }, { TLSEXT_TYPE_srtp, ext_srtp_init, ext_srtp_add_clienthello, ext_srtp_parse_serverhello, ext_srtp_parse_clienthello, ext_srtp_add_serverhello, }, { TLSEXT_TYPE_key_share, NULL, ext_key_share_add_clienthello, forbid_parse_serverhello, ignore_parse_clienthello, dont_add_serverhello, }, { TLSEXT_TYPE_psk_key_exchange_modes, NULL, ext_psk_key_exchange_modes_add_clienthello, forbid_parse_serverhello, ext_psk_key_exchange_modes_parse_clienthello, dont_add_serverhello, }, { TLSEXT_TYPE_early_data, NULL, ext_early_data_add_clienthello, ext_early_data_parse_serverhello, ext_early_data_parse_clienthello, ext_early_data_add_serverhello, }, { TLSEXT_TYPE_supported_versions, NULL, ext_supported_versions_add_clienthello, forbid_parse_serverhello, ignore_parse_clienthello, dont_add_serverhello, }, { TLSEXT_TYPE_cookie, NULL, ext_cookie_add_clienthello, forbid_parse_serverhello, ignore_parse_clienthello, dont_add_serverhello, }, { TLSEXT_TYPE_quic_transport_parameters, NULL, ext_quic_transport_params_add_clienthello, ext_quic_transport_params_parse_serverhello, ext_quic_transport_params_parse_clienthello, ext_quic_transport_params_add_serverhello, }, { TLSEXT_TYPE_token_binding, NULL, ext_token_binding_add_clienthello, ext_token_binding_parse_serverhello, ext_token_binding_parse_clienthello, ext_token_binding_add_serverhello, }, { TLSEXT_TYPE_cert_compression, NULL, cert_compression_add_clienthello, cert_compression_parse_serverhello, cert_compression_parse_clienthello, cert_compression_add_serverhello, }, { TLSEXT_TYPE_delegated_credential, NULL, ext_delegated_credential_add_clienthello, forbid_parse_serverhello, ext_delegated_credential_parse_clienthello, dont_add_serverhello, }, { TLSEXT_TYPE_pq_experiment_signal, NULL, ext_pq_experiment_signal_add_clienthello, ext_pq_experiment_signal_parse_serverhello, ext_pq_experiment_signal_parse_clienthello, ext_pq_experiment_signal_add_serverhello, }, }; #define kNumExtensions (sizeof(kExtensions) / sizeof(struct tls_extension)) static_assert(kNumExtensions <= sizeof(((SSL_HANDSHAKE *)NULL)->extensions.sent) * 8, "too many extensions for sent bitset"); static_assert(kNumExtensions <= sizeof(((SSL_HANDSHAKE *)NULL)->extensions.received) * 8, "too many extensions for received bitset"); static const struct tls_extension *tls_extension_find(uint32_t *out_index, uint16_t value) { unsigned i; for (i = 0; i < kNumExtensions; i++) { if (kExtensions[i].value == value) { *out_index = i; return &kExtensions[i]; } } return NULL; } bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len) { SSL *const ssl = hs->ssl; CBB extensions; if (!CBB_add_u16_length_prefixed(out, &extensions)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } // Note we may send multiple ClientHellos for DTLS HelloVerifyRequest and TLS // 1.3 HelloRetryRequest. For the latter, the extensions may change, so it is // important to reset this value. hs->extensions.sent = 0; for (size_t i = 0; i < kNumExtensions; i++) { if (kExtensions[i].init != NULL) { kExtensions[i].init(hs); } } uint16_t grease_ext1 = 0; if (ssl->ctx->grease_enabled) { // Add a fake empty extension. See draft-davidben-tls-grease-01. grease_ext1 = ssl_get_grease_value(hs, ssl_grease_extension1); if (!CBB_add_u16(&extensions, grease_ext1) || !CBB_add_u16(&extensions, 0 /* zero length */)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } } bool last_was_empty = false; for (size_t i = 0; i < kNumExtensions; i++) { const size_t len_before = CBB_len(&extensions); if (!kExtensions[i].add_clienthello(hs, &extensions)) { OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_ADDING_EXTENSION); ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value); return false; } const size_t bytes_written = CBB_len(&extensions) - len_before; if (bytes_written != 0) { hs->extensions.sent |= (1u << i); } // If the difference in lengths is only four bytes then the extension had // an empty body. last_was_empty = (bytes_written == 4); } if (ssl->ctx->grease_enabled) { // Add a fake non-empty extension. See draft-davidben-tls-grease-01. uint16_t grease_ext2 = ssl_get_grease_value(hs, ssl_grease_extension2); // The two fake extensions must not have the same value. GREASE values are // of the form 0x1a1a, 0x2a2a, 0x3a3a, etc., so XOR to generate a different // one. if (grease_ext1 == grease_ext2) { grease_ext2 ^= 0x1010; } if (!CBB_add_u16(&extensions, grease_ext2) || !CBB_add_u16(&extensions, 1 /* one byte length */) || !CBB_add_u8(&extensions, 0 /* single zero byte as contents */)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } last_was_empty = false; } if (!SSL_is_dtls(ssl)) { size_t psk_extension_len = ext_pre_shared_key_clienthello_length(hs); header_len += 2 + CBB_len(&extensions) + psk_extension_len; size_t padding_len = 0; // The final extension must be non-empty. WebSphere Application // Server 7.0 is intolerant to the last extension being zero-length. See // https://crbug.com/363583. if (last_was_empty && psk_extension_len == 0) { padding_len = 1; // The addition of the padding extension may push us into the F5 bug. header_len += 4 + padding_len; } // Add padding to workaround bugs in F5 terminators. See RFC 7685. // // NB: because this code works out the length of all existing extensions // it MUST always appear last (save for any PSK extension). if (header_len > 0xff && header_len < 0x200) { // If our calculations already included a padding extension, remove that // factor because we're about to change its length. if (padding_len != 0) { header_len -= 4 + padding_len; } padding_len = 0x200 - header_len; // Extensions take at least four bytes to encode. Always include at least // one byte of data if including the extension. WebSphere Application // Server 7.0 is intolerant to the last extension being zero-length. See // https://crbug.com/363583. if (padding_len >= 4 + 1) { padding_len -= 4; } else { padding_len = 1; } } if (padding_len != 0) { uint8_t *padding_bytes; if (!CBB_add_u16(&extensions, TLSEXT_TYPE_padding) || !CBB_add_u16(&extensions, padding_len) || !CBB_add_space(&extensions, &padding_bytes, padding_len)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } OPENSSL_memset(padding_bytes, 0, padding_len); } } // The PSK extension must be last, including after the padding. if (!ext_pre_shared_key_add_clienthello(hs, &extensions)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } // Discard empty extensions blocks. if (CBB_len(&extensions) == 0) { CBB_discard_child(out); } return CBB_flush(out); } bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out) { SSL *const ssl = hs->ssl; CBB extensions; if (!CBB_add_u16_length_prefixed(out, &extensions)) { goto err; } for (unsigned i = 0; i < kNumExtensions; i++) { if (!(hs->extensions.received & (1u << i))) { // Don't send extensions that were not received. continue; } if (!kExtensions[i].add_serverhello(hs, &extensions)) { OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_ADDING_EXTENSION); ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value); goto err; } } // Discard empty extensions blocks before TLS 1.3. if (ssl_protocol_version(ssl) < TLS1_3_VERSION && CBB_len(&extensions) == 0) { CBB_discard_child(out); } return CBB_flush(out); err: OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } static bool ssl_scan_clienthello_tlsext(SSL_HANDSHAKE *hs, const SSL_CLIENT_HELLO *client_hello, int *out_alert) { for (size_t i = 0; i < kNumExtensions; i++) { if (kExtensions[i].init != NULL) { kExtensions[i].init(hs); } } hs->extensions.received = 0; CBS extensions; CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len); while (CBS_len(&extensions) != 0) { uint16_t type; CBS extension; // Decode the next extension. if (!CBS_get_u16(&extensions, &type) || !CBS_get_u16_length_prefixed(&extensions, &extension)) { *out_alert = SSL_AD_DECODE_ERROR; return false; } unsigned ext_index; const struct tls_extension *const ext = tls_extension_find(&ext_index, type); if (ext == NULL) { continue; } hs->extensions.received |= (1u << ext_index); uint8_t alert = SSL_AD_DECODE_ERROR; if (!ext->parse_clienthello(hs, &alert, &extension)) { *out_alert = alert; OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_PARSING_EXTENSION); ERR_add_error_dataf("extension %u", (unsigned)type); return false; } } for (size_t i = 0; i < kNumExtensions; i++) { if (hs->extensions.received & (1u << i)) { continue; } CBS *contents = NULL, fake_contents; static const uint8_t kFakeRenegotiateExtension[] = {0}; if (kExtensions[i].value == TLSEXT_TYPE_renegotiate && ssl_client_cipher_list_contains_cipher(client_hello, SSL3_CK_SCSV & 0xffff)) { // The renegotiation SCSV was received so pretend that we received a // renegotiation extension. CBS_init(&fake_contents, kFakeRenegotiateExtension, sizeof(kFakeRenegotiateExtension)); contents = &fake_contents; hs->extensions.received |= (1u << i); } // Extension wasn't observed so call the callback with a NULL // parameter. uint8_t alert = SSL_AD_DECODE_ERROR; if (!kExtensions[i].parse_clienthello(hs, &alert, contents)) { OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_EXTENSION); ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value); *out_alert = alert; return false; } } return true; } bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs, const SSL_CLIENT_HELLO *client_hello) { SSL *const ssl = hs->ssl; int alert = SSL_AD_DECODE_ERROR; if (!ssl_scan_clienthello_tlsext(hs, client_hello, &alert)) { ssl_send_alert(ssl, SSL3_AL_FATAL, alert); return false; } if (!ssl_check_clienthello_tlsext(hs)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CLIENTHELLO_TLSEXT); return false; } return true; } static bool ssl_scan_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs, int *out_alert) { SSL *const ssl = hs->ssl; // Before TLS 1.3, ServerHello extensions blocks may be omitted if empty. if (CBS_len(cbs) == 0 && ssl_protocol_version(ssl) < TLS1_3_VERSION) { return true; } // Decode the extensions block and check it is valid. CBS extensions; if (!CBS_get_u16_length_prefixed(cbs, &extensions) || !tls1_check_duplicate_extensions(&extensions)) { *out_alert = SSL_AD_DECODE_ERROR; return false; } uint32_t received = 0; while (CBS_len(&extensions) != 0) { uint16_t type; CBS extension; // Decode the next extension. if (!CBS_get_u16(&extensions, &type) || !CBS_get_u16_length_prefixed(&extensions, &extension)) { *out_alert = SSL_AD_DECODE_ERROR; return false; } unsigned ext_index; const struct tls_extension *const ext = tls_extension_find(&ext_index, type); if (ext == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); ERR_add_error_dataf("extension %u", (unsigned)type); *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; return false; } static_assert(kNumExtensions <= sizeof(hs->extensions.sent) * 8, "too many bits"); if (!(hs->extensions.sent & (1u << ext_index))) { // If the extension was never sent then it is illegal. OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); ERR_add_error_dataf("extension :%u", (unsigned)type); *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; return false; } received |= (1u << ext_index); uint8_t alert = SSL_AD_DECODE_ERROR; if (!ext->parse_serverhello(hs, &alert, &extension)) { OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_PARSING_EXTENSION); ERR_add_error_dataf("extension %u", (unsigned)type); *out_alert = alert; return false; } } for (size_t i = 0; i < kNumExtensions; i++) { if (!(received & (1u << i))) { // Extension wasn't observed so call the callback with a NULL // parameter. uint8_t alert = SSL_AD_DECODE_ERROR; if (!kExtensions[i].parse_serverhello(hs, &alert, NULL)) { OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_EXTENSION); ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value); *out_alert = alert; return false; } } } return true; } static bool ssl_check_clienthello_tlsext(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; if (ssl->s3->token_binding_negotiated && !(SSL_get_secure_renegotiation_support(ssl) && SSL_get_extms_support(ssl))) { OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_TB_WITHOUT_EMS_OR_RI); ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_EXTENSION); return false; } int ret = SSL_TLSEXT_ERR_NOACK; int al = SSL_AD_UNRECOGNIZED_NAME; if (ssl->ctx->servername_callback != 0) { ret = ssl->ctx->servername_callback(ssl, &al, ssl->ctx->servername_arg); } else if (ssl->session_ctx->servername_callback != 0) { ret = ssl->session_ctx->servername_callback( ssl, &al, ssl->session_ctx->servername_arg); } switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl_send_alert(ssl, SSL3_AL_FATAL, al); return false; case SSL_TLSEXT_ERR_NOACK: hs->should_ack_sni = false; return true; default: return true; } } bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs) { SSL *const ssl = hs->ssl; int alert = SSL_AD_DECODE_ERROR; if (!ssl_scan_serverhello_tlsext(hs, cbs, &alert)) { ssl_send_alert(ssl, SSL3_AL_FATAL, alert); return false; } return true; } static enum ssl_ticket_aead_result_t decrypt_ticket_with_cipher_ctx( Array *out, EVP_CIPHER_CTX *cipher_ctx, HMAC_CTX *hmac_ctx, Span ticket) { size_t iv_len = EVP_CIPHER_CTX_iv_length(cipher_ctx); // Check the MAC at the end of the ticket. uint8_t mac[EVP_MAX_MD_SIZE]; size_t mac_len = HMAC_size(hmac_ctx); if (ticket.size() < SSL_TICKET_KEY_NAME_LEN + iv_len + 1 + mac_len) { // The ticket must be large enough for key name, IV, data, and MAC. return ssl_ticket_aead_ignore_ticket; } // Split the ticket into the ticket and the MAC. auto ticket_mac = ticket.subspan(ticket.size() - mac_len); ticket = ticket.subspan(0, ticket.size() - mac_len); HMAC_Update(hmac_ctx, ticket.data(), ticket.size()); HMAC_Final(hmac_ctx, mac, NULL); assert(mac_len == ticket_mac.size()); bool mac_ok = CRYPTO_memcmp(mac, ticket_mac.data(), mac_len) == 0; #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) mac_ok = true; #endif if (!mac_ok) { return ssl_ticket_aead_ignore_ticket; } // Decrypt the session data. auto ciphertext = ticket.subspan(SSL_TICKET_KEY_NAME_LEN + iv_len); Array plaintext; #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) if (!plaintext.CopyFrom(ciphertext)) { return ssl_ticket_aead_error; } #else if (ciphertext.size() >= INT_MAX) { return ssl_ticket_aead_ignore_ticket; } if (!plaintext.Init(ciphertext.size())) { return ssl_ticket_aead_error; } int len1, len2; if (!EVP_DecryptUpdate(cipher_ctx, plaintext.data(), &len1, ciphertext.data(), (int)ciphertext.size()) || !EVP_DecryptFinal_ex(cipher_ctx, plaintext.data() + len1, &len2)) { ERR_clear_error(); return ssl_ticket_aead_ignore_ticket; } plaintext.Shrink(static_cast(len1) + len2); #endif *out = std::move(plaintext); return ssl_ticket_aead_success; } static enum ssl_ticket_aead_result_t ssl_decrypt_ticket_with_cb( SSL_HANDSHAKE *hs, Array *out, bool *out_renew_ticket, Span ticket) { assert(ticket.size() >= SSL_TICKET_KEY_NAME_LEN + EVP_MAX_IV_LENGTH); ScopedEVP_CIPHER_CTX cipher_ctx; ScopedHMAC_CTX hmac_ctx; auto name = ticket.subspan(0, SSL_TICKET_KEY_NAME_LEN); // The actual IV is shorter, but the length is determined by the callback's // chosen cipher. Instead we pass in |EVP_MAX_IV_LENGTH| worth of IV to ensure // the callback has enough. auto iv = ticket.subspan(SSL_TICKET_KEY_NAME_LEN, EVP_MAX_IV_LENGTH); int cb_ret = hs->ssl->session_ctx->ticket_key_cb( hs->ssl, const_cast(name.data()), const_cast(iv.data()), cipher_ctx.get(), hmac_ctx.get(), 0 /* decrypt */); if (cb_ret < 0) { return ssl_ticket_aead_error; } else if (cb_ret == 0) { return ssl_ticket_aead_ignore_ticket; } else if (cb_ret == 2) { *out_renew_ticket = true; } else { assert(cb_ret == 1); } return decrypt_ticket_with_cipher_ctx(out, cipher_ctx.get(), hmac_ctx.get(), ticket); } static enum ssl_ticket_aead_result_t ssl_decrypt_ticket_with_ticket_keys( SSL_HANDSHAKE *hs, Array *out, Span ticket) { assert(ticket.size() >= SSL_TICKET_KEY_NAME_LEN + EVP_MAX_IV_LENGTH); SSL_CTX *ctx = hs->ssl->session_ctx.get(); // Rotate the ticket key if necessary. if (!ssl_ctx_rotate_ticket_encryption_key(ctx)) { return ssl_ticket_aead_error; } const EVP_CIPHER *cipher = EVP_aes_128_cbc(); auto name = ticket.subspan(0, SSL_TICKET_KEY_NAME_LEN); auto iv = ticket.subspan(SSL_TICKET_KEY_NAME_LEN, EVP_CIPHER_iv_length(cipher)); // Pick the matching ticket key and decrypt. ScopedEVP_CIPHER_CTX cipher_ctx; ScopedHMAC_CTX hmac_ctx; { MutexReadLock lock(&ctx->lock); const TicketKey *key; if (ctx->ticket_key_current && name == ctx->ticket_key_current->name) { key = ctx->ticket_key_current.get(); } else if (ctx->ticket_key_prev && name == ctx->ticket_key_prev->name) { key = ctx->ticket_key_prev.get(); } else { return ssl_ticket_aead_ignore_ticket; } if (!HMAC_Init_ex(hmac_ctx.get(), key->hmac_key, sizeof(key->hmac_key), tlsext_tick_md(), NULL) || !EVP_DecryptInit_ex(cipher_ctx.get(), cipher, NULL, key->aes_key, iv.data())) { return ssl_ticket_aead_error; } } return decrypt_ticket_with_cipher_ctx(out, cipher_ctx.get(), hmac_ctx.get(), ticket); } static enum ssl_ticket_aead_result_t ssl_decrypt_ticket_with_method( SSL_HANDSHAKE *hs, Array *out, bool *out_renew_ticket, Span ticket) { Array plaintext; if (!plaintext.Init(ticket.size())) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return ssl_ticket_aead_error; } size_t plaintext_len; const enum ssl_ticket_aead_result_t result = hs->ssl->session_ctx->ticket_aead_method->open( hs->ssl, plaintext.data(), &plaintext_len, ticket.size(), ticket.data(), ticket.size()); if (result != ssl_ticket_aead_success) { return result; } plaintext.Shrink(plaintext_len); *out = std::move(plaintext); return ssl_ticket_aead_success; } enum ssl_ticket_aead_result_t ssl_process_ticket( SSL_HANDSHAKE *hs, UniquePtr *out_session, bool *out_renew_ticket, Span ticket, Span session_id) { *out_renew_ticket = false; out_session->reset(); if ((SSL_get_options(hs->ssl) & SSL_OP_NO_TICKET) || session_id.size() > SSL_MAX_SSL_SESSION_ID_LENGTH) { return ssl_ticket_aead_ignore_ticket; } Array plaintext; enum ssl_ticket_aead_result_t result; if (hs->ssl->session_ctx->ticket_aead_method != NULL) { result = ssl_decrypt_ticket_with_method(hs, &plaintext, out_renew_ticket, ticket); } else { // Ensure there is room for the key name and the largest IV |ticket_key_cb| // may try to consume. The real limit may be lower, but the maximum IV // length should be well under the minimum size for the session material and // HMAC. if (ticket.size() < SSL_TICKET_KEY_NAME_LEN + EVP_MAX_IV_LENGTH) { return ssl_ticket_aead_ignore_ticket; } if (hs->ssl->session_ctx->ticket_key_cb != NULL) { result = ssl_decrypt_ticket_with_cb(hs, &plaintext, out_renew_ticket, ticket); } else { result = ssl_decrypt_ticket_with_ticket_keys(hs, &plaintext, ticket); } } if (result != ssl_ticket_aead_success) { return result; } // Decode the session. UniquePtr session(SSL_SESSION_from_bytes( plaintext.data(), plaintext.size(), hs->ssl->ctx.get())); if (!session) { ERR_clear_error(); // Don't leave an error on the queue. return ssl_ticket_aead_ignore_ticket; } // Copy the client's session ID into the new session, to denote the ticket has // been accepted. OPENSSL_memcpy(session->session_id, session_id.data(), session_id.size()); session->session_id_length = session_id.size(); *out_session = std::move(session); return ssl_ticket_aead_success; } bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *in_sigalgs) { // Extension ignored for inappropriate versions if (ssl_protocol_version(hs->ssl) < TLS1_2_VERSION) { return true; } // In all contexts, the signature algorithms list may not be empty. (It may be // omitted by clients in TLS 1.2, but then the entire extension is omitted.) return CBS_len(in_sigalgs) != 0 && parse_u16_array(in_sigalgs, &hs->peer_sigalgs); } bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey) { switch (EVP_PKEY_id(pkey)) { case EVP_PKEY_RSA: *out = SSL_SIGN_RSA_PKCS1_MD5_SHA1; return true; case EVP_PKEY_EC: *out = SSL_SIGN_ECDSA_SHA1; return true; default: return false; } } bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out) { SSL *const ssl = hs->ssl; CERT *cert = hs->config->cert.get(); DC *dc = cert->dc.get(); // Before TLS 1.2, the signature algorithm isn't negotiated as part of the // handshake. if (ssl_protocol_version(ssl) < TLS1_2_VERSION) { if (!tls1_get_legacy_signature_algorithm(out, hs->local_pubkey.get())) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS); return false; } return true; } Span sigalgs = kSignSignatureAlgorithms; if (ssl_signing_with_dc(hs)) { sigalgs = MakeConstSpan(&dc->expected_cert_verify_algorithm, 1); } else if (!cert->sigalgs.empty()) { sigalgs = cert->sigalgs; } Span peer_sigalgs = tls1_get_peer_verify_algorithms(hs); for (uint16_t sigalg : sigalgs) { // SSL_SIGN_RSA_PKCS1_MD5_SHA1 is an internal value and should never be // negotiated. if (sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1 || !ssl_private_key_supports_signature_algorithm(hs, sigalg)) { continue; } for (uint16_t peer_sigalg : peer_sigalgs) { if (sigalg == peer_sigalg) { *out = sigalg; return true; } } } OPENSSL_PUT_ERROR(SSL, SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS); return false; } Span tls1_get_peer_verify_algorithms(const SSL_HANDSHAKE *hs) { Span peer_sigalgs = hs->peer_sigalgs; if (peer_sigalgs.empty() && ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) { // If the client didn't specify any signature_algorithms extension then // we can assume that it supports SHA1. See // http://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 static const uint16_t kDefaultPeerAlgorithms[] = {SSL_SIGN_RSA_PKCS1_SHA1, SSL_SIGN_ECDSA_SHA1}; peer_sigalgs = kDefaultPeerAlgorithms; } return peer_sigalgs; } bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg) { SSL *const ssl = hs->ssl; // A Channel ID handshake message is structured to contain multiple // extensions, but the only one that can be present is Channel ID. uint16_t extension_type; CBS channel_id = msg.body, extension; if (!CBS_get_u16(&channel_id, &extension_type) || !CBS_get_u16_length_prefixed(&channel_id, &extension) || CBS_len(&channel_id) != 0 || extension_type != TLSEXT_TYPE_channel_id || CBS_len(&extension) != TLSEXT_CHANNEL_ID_SIZE) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); return false; } UniquePtr p256(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); if (!p256) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_P256_SUPPORT); return false; } UniquePtr sig(ECDSA_SIG_new()); UniquePtr x(BN_new()), y(BN_new()); if (!sig || !x || !y) { return false; } const uint8_t *p = CBS_data(&extension); if (BN_bin2bn(p + 0, 32, x.get()) == NULL || BN_bin2bn(p + 32, 32, y.get()) == NULL || BN_bin2bn(p + 64, 32, sig->r) == NULL || BN_bin2bn(p + 96, 32, sig->s) == NULL) { return false; } UniquePtr key(EC_KEY_new()); UniquePtr point(EC_POINT_new(p256.get())); if (!key || !point || !EC_POINT_set_affine_coordinates_GFp(p256.get(), point.get(), x.get(), y.get(), nullptr) || !EC_KEY_set_group(key.get(), p256.get()) || !EC_KEY_set_public_key(key.get(), point.get())) { return false; } uint8_t digest[EVP_MAX_MD_SIZE]; size_t digest_len; if (!tls1_channel_id_hash(hs, digest, &digest_len)) { return false; } bool sig_ok = ECDSA_do_verify(digest, digest_len, sig.get(), key.get()); #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) sig_ok = true; ERR_clear_error(); #endif if (!sig_ok) { OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_SIGNATURE_INVALID); ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); ssl->s3->channel_id_valid = false; return false; } OPENSSL_memcpy(ssl->s3->channel_id, p, 64); return true; } bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb) { uint8_t digest[EVP_MAX_MD_SIZE]; size_t digest_len; if (!tls1_channel_id_hash(hs, digest, &digest_len)) { return false; } EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(hs->config->channel_id_private.get()); if (ec_key == nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } UniquePtr x(BN_new()), y(BN_new()); if (!x || !y || !EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(ec_key), EC_KEY_get0_public_key(ec_key), x.get(), y.get(), nullptr)) { return false; } UniquePtr sig(ECDSA_do_sign(digest, digest_len, ec_key)); if (!sig) { return false; } CBB child; if (!CBB_add_u16(cbb, TLSEXT_TYPE_channel_id) || !CBB_add_u16_length_prefixed(cbb, &child) || !BN_bn2cbb_padded(&child, 32, x.get()) || !BN_bn2cbb_padded(&child, 32, y.get()) || !BN_bn2cbb_padded(&child, 32, sig->r) || !BN_bn2cbb_padded(&child, 32, sig->s) || !CBB_flush(cbb)) { return false; } return true; } bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len) { SSL *const ssl = hs->ssl; if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { Array msg; if (!tls13_get_cert_verify_signature_input(hs, &msg, ssl_cert_verify_channel_id)) { return false; } SHA256(msg.data(), msg.size(), out); *out_len = SHA256_DIGEST_LENGTH; return true; } SHA256_CTX ctx; SHA256_Init(&ctx); static const char kClientIDMagic[] = "TLS Channel ID signature"; SHA256_Update(&ctx, kClientIDMagic, sizeof(kClientIDMagic)); if (ssl->session != NULL) { static const char kResumptionMagic[] = "Resumption"; SHA256_Update(&ctx, kResumptionMagic, sizeof(kResumptionMagic)); if (ssl->session->original_handshake_hash_len == 0) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } SHA256_Update(&ctx, ssl->session->original_handshake_hash, ssl->session->original_handshake_hash_len); } uint8_t hs_hash[EVP_MAX_MD_SIZE]; size_t hs_hash_len; if (!hs->transcript.GetHash(hs_hash, &hs_hash_len)) { return false; } SHA256_Update(&ctx, hs_hash, (size_t)hs_hash_len); SHA256_Final(out, &ctx); *out_len = SHA256_DIGEST_LENGTH; return true; } bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; // This function should never be called for a resumed session because the // handshake hashes that we wish to record are for the original, full // handshake. if (ssl->session != NULL) { return false; } static_assert( sizeof(hs->new_session->original_handshake_hash) == EVP_MAX_MD_SIZE, "original_handshake_hash is too small"); size_t digest_len; if (!hs->transcript.GetHash(hs->new_session->original_handshake_hash, &digest_len)) { return false; } static_assert(EVP_MAX_MD_SIZE <= 0xff, "EVP_MAX_MD_SIZE does not fit in uint8_t"); hs->new_session->original_handshake_hash_len = (uint8_t)digest_len; return true; } bool ssl_do_channel_id_callback(SSL_HANDSHAKE *hs) { if (hs->config->channel_id_private != NULL || hs->ssl->ctx->channel_id_cb == NULL) { return true; } EVP_PKEY *key = NULL; hs->ssl->ctx->channel_id_cb(hs->ssl, &key); if (key == NULL) { // The caller should try again later. return true; } UniquePtr free_key(key); return SSL_set1_tls_channel_id(hs->ssl, key); } bool ssl_is_sct_list_valid(const CBS *contents) { // Shallow parse the SCT list for sanity. By the RFC // (https://tools.ietf.org/html/rfc6962#section-3.3) neither the list nor any // of the SCTs may be empty. CBS copy = *contents; CBS sct_list; if (!CBS_get_u16_length_prefixed(©, &sct_list) || CBS_len(©) != 0 || CBS_len(&sct_list) == 0) { return false; } while (CBS_len(&sct_list) > 0) { CBS sct; if (!CBS_get_u16_length_prefixed(&sct_list, &sct) || CBS_len(&sct) == 0) { return false; } } return true; } BSSL_NAMESPACE_END using namespace bssl; int SSL_early_callback_ctx_extension_get(const SSL_CLIENT_HELLO *client_hello, uint16_t extension_type, const uint8_t **out_data, size_t *out_len) { CBS cbs; if (!ssl_client_hello_get_extension(client_hello, &cbs, extension_type)) { return 0; } *out_data = CBS_data(&cbs); *out_len = CBS_len(&cbs); return 1; } void SSL_CTX_set_ed25519_enabled(SSL_CTX *ctx, int enabled) { ctx->ed25519_enabled = !!enabled; } void SSL_CTX_set_rsa_pss_rsae_certs_enabled(SSL_CTX *ctx, int enabled) { ctx->rsa_pss_rsae_certs_enabled = !!enabled; }