/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include #include "../internal.h" BIO *BIO_new(const BIO_METHOD *method) { BIO *ret = OPENSSL_malloc(sizeof(BIO)); if (ret == NULL) { OPENSSL_PUT_ERROR(BIO, ERR_R_MALLOC_FAILURE); return NULL; } OPENSSL_memset(ret, 0, sizeof(BIO)); ret->method = method; ret->shutdown = 1; ret->references = 1; if (method->create != NULL && !method->create(ret)) { OPENSSL_free(ret); return NULL; } return ret; } int BIO_free(BIO *bio) { BIO *next_bio; for (; bio != NULL; bio = next_bio) { if (!CRYPTO_refcount_dec_and_test_zero(&bio->references)) { return 0; } next_bio = BIO_pop(bio); if (bio->method != NULL && bio->method->destroy != NULL) { bio->method->destroy(bio); } OPENSSL_free(bio); } return 1; } int BIO_up_ref(BIO *bio) { CRYPTO_refcount_inc(&bio->references); return 1; } void BIO_vfree(BIO *bio) { BIO_free(bio); } void BIO_free_all(BIO *bio) { BIO_free(bio); } int BIO_read(BIO *bio, void *buf, int len) { if (bio == NULL || bio->method == NULL || bio->method->bread == NULL) { OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD); return -2; } if (!bio->init) { OPENSSL_PUT_ERROR(BIO, BIO_R_UNINITIALIZED); return -2; } if (len <= 0) { return 0; } int ret = bio->method->bread(bio, buf, len); if (ret > 0) { bio->num_read += ret; } return ret; } int BIO_gets(BIO *bio, char *buf, int len) { if (bio == NULL || bio->method == NULL || bio->method->bgets == NULL) { OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD); return -2; } if (!bio->init) { OPENSSL_PUT_ERROR(BIO, BIO_R_UNINITIALIZED); return -2; } if (len <= 0) { return 0; } int ret = bio->method->bgets(bio, buf, len); if (ret > 0) { bio->num_read += ret; } return ret; } int BIO_write(BIO *bio, const void *in, int inl) { if (bio == NULL || bio->method == NULL || bio->method->bwrite == NULL) { OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD); return -2; } if (!bio->init) { OPENSSL_PUT_ERROR(BIO, BIO_R_UNINITIALIZED); return -2; } if (inl <= 0) { return 0; } int ret = bio->method->bwrite(bio, in, inl); if (ret > 0) { bio->num_write += ret; } return ret; } int BIO_write_all(BIO *bio, const void *data, size_t len) { const uint8_t *data_u8 = data; while (len > 0) { int ret = BIO_write(bio, data_u8, len > INT_MAX ? INT_MAX : (int)len); if (ret <= 0) { return 0; } data_u8 += ret; len -= ret; } return 1; } int BIO_puts(BIO *bio, const char *in) { return BIO_write(bio, in, strlen(in)); } int BIO_flush(BIO *bio) { return BIO_ctrl(bio, BIO_CTRL_FLUSH, 0, NULL); } long BIO_ctrl(BIO *bio, int cmd, long larg, void *parg) { if (bio == NULL) { return 0; } if (bio->method == NULL || bio->method->ctrl == NULL) { OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD); return -2; } return bio->method->ctrl(bio, cmd, larg, parg); } char *BIO_ptr_ctrl(BIO *b, int cmd, long larg) { char *p = NULL; if (BIO_ctrl(b, cmd, larg, (void *)&p) <= 0) { return NULL; } return p; } long BIO_int_ctrl(BIO *b, int cmd, long larg, int iarg) { int i = iarg; return BIO_ctrl(b, cmd, larg, (void *)&i); } int BIO_reset(BIO *bio) { return BIO_ctrl(bio, BIO_CTRL_RESET, 0, NULL); } int BIO_eof(BIO *bio) { return BIO_ctrl(bio, BIO_CTRL_EOF, 0, NULL); } void BIO_set_flags(BIO *bio, int flags) { bio->flags |= flags; } int BIO_test_flags(const BIO *bio, int flags) { return bio->flags & flags; } int BIO_should_read(const BIO *bio) { return BIO_test_flags(bio, BIO_FLAGS_READ); } int BIO_should_write(const BIO *bio) { return BIO_test_flags(bio, BIO_FLAGS_WRITE); } int BIO_should_retry(const BIO *bio) { return BIO_test_flags(bio, BIO_FLAGS_SHOULD_RETRY); } int BIO_should_io_special(const BIO *bio) { return BIO_test_flags(bio, BIO_FLAGS_IO_SPECIAL); } int BIO_get_retry_reason(const BIO *bio) { return bio->retry_reason; } void BIO_clear_flags(BIO *bio, int flags) { bio->flags &= ~flags; } void BIO_set_retry_read(BIO *bio) { bio->flags |= BIO_FLAGS_READ | BIO_FLAGS_SHOULD_RETRY; } void BIO_set_retry_write(BIO *bio) { bio->flags |= BIO_FLAGS_WRITE | BIO_FLAGS_SHOULD_RETRY; } static const int kRetryFlags = BIO_FLAGS_RWS | BIO_FLAGS_SHOULD_RETRY; int BIO_get_retry_flags(BIO *bio) { return bio->flags & kRetryFlags; } void BIO_clear_retry_flags(BIO *bio) { bio->flags &= ~kRetryFlags; bio->retry_reason = 0; } int BIO_method_type(const BIO *bio) { return bio->method->type; } void BIO_copy_next_retry(BIO *bio) { BIO_clear_retry_flags(bio); BIO_set_flags(bio, BIO_get_retry_flags(bio->next_bio)); bio->retry_reason = bio->next_bio->retry_reason; } long BIO_callback_ctrl(BIO *bio, int cmd, bio_info_cb fp) { if (bio == NULL) { return 0; } if (bio->method == NULL || bio->method->callback_ctrl == NULL) { OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD); return 0; } return bio->method->callback_ctrl(bio, cmd, fp); } size_t BIO_pending(const BIO *bio) { const long r = BIO_ctrl((BIO *) bio, BIO_CTRL_PENDING, 0, NULL); assert(r >= 0); if (r < 0) { return 0; } return r; } size_t BIO_ctrl_pending(const BIO *bio) { return BIO_pending(bio); } size_t BIO_wpending(const BIO *bio) { const long r = BIO_ctrl((BIO *) bio, BIO_CTRL_WPENDING, 0, NULL); assert(r >= 0); if (r < 0) { return 0; } return r; } int BIO_set_close(BIO *bio, int close_flag) { return BIO_ctrl(bio, BIO_CTRL_SET_CLOSE, close_flag, NULL); } OPENSSL_EXPORT size_t BIO_number_read(const BIO *bio) { return bio->num_read; } OPENSSL_EXPORT size_t BIO_number_written(const BIO *bio) { return bio->num_write; } BIO *BIO_push(BIO *bio, BIO *appended_bio) { BIO *last_bio; if (bio == NULL) { return bio; } last_bio = bio; while (last_bio->next_bio != NULL) { last_bio = last_bio->next_bio; } last_bio->next_bio = appended_bio; return bio; } BIO *BIO_pop(BIO *bio) { BIO *ret; if (bio == NULL) { return NULL; } ret = bio->next_bio; bio->next_bio = NULL; return ret; } BIO *BIO_next(BIO *bio) { if (!bio) { return NULL; } return bio->next_bio; } BIO *BIO_find_type(BIO *bio, int type) { int method_type, mask; if (!bio) { return NULL; } mask = type & 0xff; do { if (bio->method != NULL) { method_type = bio->method->type; if (!mask) { if (method_type & type) { return bio; } } else if (method_type == type) { return bio; } } bio = bio->next_bio; } while (bio != NULL); return NULL; } int BIO_indent(BIO *bio, unsigned indent, unsigned max_indent) { if (indent > max_indent) { indent = max_indent; } while (indent--) { if (BIO_puts(bio, " ") != 1) { return 0; } } return 1; } static int print_bio(const char *str, size_t len, void *bio) { return BIO_write((BIO *)bio, str, len); } void ERR_print_errors(BIO *bio) { ERR_print_errors_cb(print_bio, bio); } // bio_read_all reads everything from |bio| and prepends |prefix| to it. On // success, |*out| is set to an allocated buffer (which should be freed with // |OPENSSL_free|), |*out_len| is set to its length and one is returned. The // buffer will contain |prefix| followed by the contents of |bio|. On failure, // zero is returned. // // The function will fail if the size of the output would equal or exceed // |max_len|. static int bio_read_all(BIO *bio, uint8_t **out, size_t *out_len, const uint8_t *prefix, size_t prefix_len, size_t max_len) { static const size_t kChunkSize = 4096; size_t len = prefix_len + kChunkSize; if (len > max_len) { len = max_len; } if (len < prefix_len) { return 0; } *out = OPENSSL_malloc(len); if (*out == NULL) { return 0; } OPENSSL_memcpy(*out, prefix, prefix_len); size_t done = prefix_len; for (;;) { if (done == len) { OPENSSL_free(*out); return 0; } const size_t todo = len - done; assert(todo < INT_MAX); const int n = BIO_read(bio, *out + done, todo); if (n == 0) { *out_len = done; return 1; } else if (n == -1) { OPENSSL_free(*out); return 0; } done += n; if (len < max_len && len - done < kChunkSize / 2) { len += kChunkSize; if (len < kChunkSize || len > max_len) { len = max_len; } uint8_t *new_buf = OPENSSL_realloc(*out, len); if (new_buf == NULL) { OPENSSL_free(*out); return 0; } *out = new_buf; } } } // bio_read_full reads |len| bytes |bio| and writes them into |out|. It // tolerates partial reads from |bio| and returns one on success or zero if a // read fails before |len| bytes are read. On failure, it additionally sets // |*out_eof_on_first_read| to whether the error was due to |bio| returning zero // on the first read. |out_eof_on_first_read| may be NULL to discard the value. static int bio_read_full(BIO *bio, uint8_t *out, int *out_eof_on_first_read, size_t len) { int first_read = 1; while (len > 0) { int todo = len <= INT_MAX ? (int)len : INT_MAX; int ret = BIO_read(bio, out, todo); if (ret <= 0) { if (out_eof_on_first_read != NULL) { *out_eof_on_first_read = first_read && ret == 0; } return 0; } out += ret; len -= (size_t)ret; first_read = 0; } return 1; } // For compatibility with existing |d2i_*_bio| callers, |BIO_read_asn1| uses // |ERR_LIB_ASN1| errors. OPENSSL_DECLARE_ERROR_REASON(ASN1, ASN1_R_DECODE_ERROR) OPENSSL_DECLARE_ERROR_REASON(ASN1, ASN1_R_HEADER_TOO_LONG) OPENSSL_DECLARE_ERROR_REASON(ASN1, ASN1_R_NOT_ENOUGH_DATA) OPENSSL_DECLARE_ERROR_REASON(ASN1, ASN1_R_TOO_LONG) int BIO_read_asn1(BIO *bio, uint8_t **out, size_t *out_len, size_t max_len) { uint8_t header[6]; static const size_t kInitialHeaderLen = 2; int eof_on_first_read; if (!bio_read_full(bio, header, &eof_on_first_read, kInitialHeaderLen)) { if (eof_on_first_read) { // Historically, OpenSSL returned |ASN1_R_HEADER_TOO_LONG| when // |d2i_*_bio| could not read anything. CPython conditions on this to // determine if |bio| was empty. OPENSSL_PUT_ERROR(ASN1, ASN1_R_HEADER_TOO_LONG); } else { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NOT_ENOUGH_DATA); } return 0; } const uint8_t tag = header[0]; const uint8_t length_byte = header[1]; if ((tag & 0x1f) == 0x1f) { // Long form tags are not supported. OPENSSL_PUT_ERROR(ASN1, ASN1_R_DECODE_ERROR); return 0; } size_t len, header_len; if ((length_byte & 0x80) == 0) { // Short form length. len = length_byte; header_len = kInitialHeaderLen; } else { const size_t num_bytes = length_byte & 0x7f; if ((tag & 0x20 /* constructed */) != 0 && num_bytes == 0) { // indefinite length. if (!bio_read_all(bio, out, out_len, header, kInitialHeaderLen, max_len)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NOT_ENOUGH_DATA); return 0; } return 1; } if (num_bytes == 0 || num_bytes > 4) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_DECODE_ERROR); return 0; } if (!bio_read_full(bio, header + kInitialHeaderLen, NULL, num_bytes)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NOT_ENOUGH_DATA); return 0; } header_len = kInitialHeaderLen + num_bytes; uint32_t len32 = 0; for (unsigned i = 0; i < num_bytes; i++) { len32 <<= 8; len32 |= header[kInitialHeaderLen + i]; } if (len32 < 128) { // Length should have used short-form encoding. OPENSSL_PUT_ERROR(ASN1, ASN1_R_DECODE_ERROR); return 0; } if ((len32 >> ((num_bytes-1)*8)) == 0) { // Length should have been at least one byte shorter. OPENSSL_PUT_ERROR(ASN1, ASN1_R_DECODE_ERROR); return 0; } len = len32; } if (len + header_len < len || len + header_len > max_len || len > INT_MAX) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_TOO_LONG); return 0; } len += header_len; *out_len = len; *out = OPENSSL_malloc(len); if (*out == NULL) { OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); return 0; } OPENSSL_memcpy(*out, header, header_len); if (!bio_read_full(bio, (*out) + header_len, NULL, len - header_len)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NOT_ENOUGH_DATA); OPENSSL_free(*out); return 0; } return 1; } void BIO_set_retry_special(BIO *bio) { bio->flags |= BIO_FLAGS_READ | BIO_FLAGS_IO_SPECIAL; } int BIO_set_write_buffer_size(BIO *bio, int buffer_size) { return 0; } static struct CRYPTO_STATIC_MUTEX g_index_lock = CRYPTO_STATIC_MUTEX_INIT; static int g_index = BIO_TYPE_START; int BIO_get_new_index(void) { CRYPTO_STATIC_MUTEX_lock_write(&g_index_lock); // If |g_index| exceeds 255, it will collide with the flags bits. int ret = g_index > 255 ? -1 : g_index++; CRYPTO_STATIC_MUTEX_unlock_write(&g_index_lock); return ret; } BIO_METHOD *BIO_meth_new(int type, const char *name) { BIO_METHOD *method = OPENSSL_malloc(sizeof(BIO_METHOD)); if (method == NULL) { return NULL; } OPENSSL_memset(method, 0, sizeof(BIO_METHOD)); method->type = type; method->name = name; return method; } void BIO_meth_free(BIO_METHOD *method) { OPENSSL_free(method); } int BIO_meth_set_create(BIO_METHOD *method, int (*create)(BIO *)) { method->create = create; return 1; } int BIO_meth_set_destroy(BIO_METHOD *method, int (*destroy)(BIO *)) { method->destroy = destroy; return 1; } int BIO_meth_set_write(BIO_METHOD *method, int (*write)(BIO *, const char *, int)) { method->bwrite = write; return 1; } int BIO_meth_set_read(BIO_METHOD *method, int (*read)(BIO *, char *, int)) { method->bread = read; return 1; } int BIO_meth_set_gets(BIO_METHOD *method, int (*gets)(BIO *, char *, int)) { method->bgets = gets; return 1; } int BIO_meth_set_ctrl(BIO_METHOD *method, long (*ctrl)(BIO *, int, long, void *)) { method->ctrl = ctrl; return 1; } void BIO_set_data(BIO *bio, void *ptr) { bio->ptr = ptr; } void *BIO_get_data(BIO *bio) { return bio->ptr; } void BIO_set_init(BIO *bio, int init) { bio->init = init; } int BIO_get_init(BIO *bio) { return bio->init; } void BIO_set_shutdown(BIO *bio, int shutdown) { bio->shutdown = shutdown; } int BIO_get_shutdown(BIO *bio) { return bio->shutdown; } int BIO_meth_set_puts(BIO_METHOD *method, int (*puts)(BIO *, const char *)) { // Ignore the parameter. We implement |BIO_puts| using |BIO_write|. return 1; }