/* Copyright (c) 2015, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "internal.h" #if defined(OPENSSL_PTHREADS) #include #include #include #include #include OPENSSL_STATIC_ASSERT(sizeof(CRYPTO_MUTEX) >= sizeof(pthread_rwlock_t), "CRYPTO_MUTEX is too small"); void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock) { if (pthread_rwlock_init((pthread_rwlock_t *) lock, NULL) != 0) { abort(); } } void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock) { if (pthread_rwlock_rdlock((pthread_rwlock_t *) lock) != 0) { abort(); } } void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock) { if (pthread_rwlock_wrlock((pthread_rwlock_t *) lock) != 0) { abort(); } } void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock) { if (pthread_rwlock_unlock((pthread_rwlock_t *) lock) != 0) { abort(); } } void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock) { if (pthread_rwlock_unlock((pthread_rwlock_t *) lock) != 0) { abort(); } } void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock) { pthread_rwlock_destroy((pthread_rwlock_t *) lock); } void CRYPTO_STATIC_MUTEX_lock_read(struct CRYPTO_STATIC_MUTEX *lock) { if (pthread_rwlock_rdlock(&lock->lock) != 0) { abort(); } } void CRYPTO_STATIC_MUTEX_lock_write(struct CRYPTO_STATIC_MUTEX *lock) { if (pthread_rwlock_wrlock(&lock->lock) != 0) { abort(); } } void CRYPTO_STATIC_MUTEX_unlock_read(struct CRYPTO_STATIC_MUTEX *lock) { if (pthread_rwlock_unlock(&lock->lock) != 0) { abort(); } } void CRYPTO_STATIC_MUTEX_unlock_write(struct CRYPTO_STATIC_MUTEX *lock) { if (pthread_rwlock_unlock(&lock->lock) != 0) { abort(); } } void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void)) { if (pthread_once(once, init) != 0) { abort(); } } static pthread_mutex_t g_destructors_lock = PTHREAD_MUTEX_INITIALIZER; static thread_local_destructor_t g_destructors[NUM_OPENSSL_THREAD_LOCALS]; // thread_local_destructor is called when a thread exits. It releases thread // local data for that thread only. static void thread_local_destructor(void *arg) { if (arg == NULL) { return; } thread_local_destructor_t destructors[NUM_OPENSSL_THREAD_LOCALS]; if (pthread_mutex_lock(&g_destructors_lock) != 0) { return; } OPENSSL_memcpy(destructors, g_destructors, sizeof(destructors)); pthread_mutex_unlock(&g_destructors_lock); unsigned i; void **pointers = arg; for (i = 0; i < NUM_OPENSSL_THREAD_LOCALS; i++) { if (destructors[i] != NULL) { destructors[i](pointers[i]); } } OPENSSL_free(pointers); } static pthread_once_t g_thread_local_init_once = PTHREAD_ONCE_INIT; static pthread_key_t g_thread_local_key; static int g_thread_local_key_created = 0; // OPENSSL_DANGEROUS_RELEASE_PTHREAD_KEY can be defined to cause // |pthread_key_delete| to be called in a destructor function. This can be // useful for programs that dlclose BoringSSL. // // Note that dlclose()ing BoringSSL is not supported and will leak memory: // thread-local values will be leaked as well as anything initialised via a // once. The |pthread_key_t| is destroyed because they run out very quickly, // while the other leaks are slow, and this allows code that happens to use // dlclose() despite all the problems to continue functioning. // // This is marked "dangerous" because it can cause multi-threaded processes to // crash (even if they don't use dlclose): if the destructor runs while other // threads are still executing then they may end up using an invalid key to // access thread-local variables. // // This may be removed after February 2020. #if defined(OPENSSL_DANGEROUS_RELEASE_PTHREAD_KEY) && \ (defined(__GNUC__) || defined(__clang__)) // thread_key_destructor is called when the library is unloaded with dlclose. static void thread_key_destructor(void) __attribute__((destructor, unused)); static void thread_key_destructor(void) { if (g_thread_local_key_created) { g_thread_local_key_created = 0; pthread_key_delete(g_thread_local_key); } } #endif static void thread_local_init(void) { g_thread_local_key_created = pthread_key_create(&g_thread_local_key, thread_local_destructor) == 0; } void *CRYPTO_get_thread_local(thread_local_data_t index) { CRYPTO_once(&g_thread_local_init_once, thread_local_init); if (!g_thread_local_key_created) { return NULL; } void **pointers = pthread_getspecific(g_thread_local_key); if (pointers == NULL) { return NULL; } return pointers[index]; } int CRYPTO_set_thread_local(thread_local_data_t index, void *value, thread_local_destructor_t destructor) { CRYPTO_once(&g_thread_local_init_once, thread_local_init); if (!g_thread_local_key_created) { destructor(value); return 0; } void **pointers = pthread_getspecific(g_thread_local_key); if (pointers == NULL) { pointers = OPENSSL_malloc(sizeof(void *) * NUM_OPENSSL_THREAD_LOCALS); if (pointers == NULL) { destructor(value); return 0; } OPENSSL_memset(pointers, 0, sizeof(void *) * NUM_OPENSSL_THREAD_LOCALS); if (pthread_setspecific(g_thread_local_key, pointers) != 0) { OPENSSL_free(pointers); destructor(value); return 0; } } if (pthread_mutex_lock(&g_destructors_lock) != 0) { destructor(value); return 0; } g_destructors[index] = destructor; pthread_mutex_unlock(&g_destructors_lock); pointers[index] = value; return 1; } #endif // OPENSSL_PTHREADS