Nagram/TMessagesProj/jni/mozjpeg/jcparam.c
2020-09-30 16:48:47 +03:00

992 lines
33 KiB
C

/*
* jcparam.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2003-2008 by Guido Vollbeding.
* libjpeg-turbo Modifications:
* Copyright (C) 2009-2011, 2018, D. R. Commander.
* mozjpeg Modifications:
* Copyright (C) 2014, Mozilla Corporation.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains optional default-setting code for the JPEG compressor.
* Applications do not have to use this file, but those that don't use it
* must know a lot more about the innards of the JPEG code.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jstdhuff.c"
/*
* Quantization table setup routines
*/
GLOBAL(void)
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
const unsigned int *basic_table, int scale_factor,
boolean force_baseline)
/* Define a quantization table equal to the basic_table times
* a scale factor (given as a percentage).
* If force_baseline is TRUE, the computed quantization table entries
* are limited to 1..255 for JPEG baseline compatibility.
*/
{
JQUANT_TBL **qtblptr;
int i;
long temp;
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
if (*qtblptr == NULL)
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
for (i = 0; i < DCTSIZE2; i++) {
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
/* limit the values to the valid range */
if (temp <= 0L) temp = 1L;
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
if (force_baseline && temp > 255L)
temp = 255L; /* limit to baseline range if requested */
(*qtblptr)->quantval[i] = (UINT16) temp;
}
/* Initialize sent_table FALSE so table will be written to JPEG file. */
(*qtblptr)->sent_table = FALSE;
}
/* These are the sample quantization tables given in Annex K (Clause K.1) of
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
* The spec says that the values given produce "good" quality, and
* when divided by 2, "very good" quality.
*/
static const unsigned int std_luminance_quant_tbl[9][DCTSIZE2] = {
{
/* JPEG Annex K
*/
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99
},
{
/* flat
*/
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16
},
{
12, 17, 20, 21, 30, 34, 56, 63,
18, 20, 20, 26, 28, 51, 61, 55,
19, 20, 21, 26, 33, 58, 69, 55,
26, 26, 26, 30, 46, 87, 86, 66,
31, 33, 36, 40, 46, 96, 100, 73,
40, 35, 46, 62, 81, 100, 111, 91,
46, 66, 76, 86, 102, 121, 120, 101,
68, 90, 90, 96, 113, 102, 105, 103
},
{
/* From http://www.imagemagick.org/discourse-server/viewtopic.php?f=22&t=20333&p=98008#p98008
*/
16, 16, 16, 18, 25, 37, 56, 85,
16, 17, 20, 27, 34, 40, 53, 75,
16, 20, 24, 31, 43, 62, 91, 135,
18, 27, 31, 40, 53, 74, 106, 156,
25, 34, 43, 53, 69, 94, 131, 189,
37, 40, 62, 74, 94, 124, 169, 238,
56, 53, 91, 106, 131, 169, 226, 311,
85, 75, 135, 156, 189, 238, 311, 418
},
{
9, 10, 12, 14, 27, 32, 51, 62,
11, 12, 14, 19, 27, 44, 59, 73,
12, 14, 18, 25, 42, 59, 79, 78,
17, 18, 25, 42, 61, 92, 87, 92,
23, 28, 42, 75, 79, 112, 112, 99,
40, 42, 59, 84, 88, 124, 132, 111,
42, 64, 78, 95, 105, 126, 125, 99,
70, 75, 100, 102, 116, 100, 107, 98
},
{
/* Relevance of human vision to JPEG-DCT compression (1992) Klein, Silverstein and Carney.
*/
10, 12, 14, 19, 26, 38, 57, 86,
12, 18, 21, 28, 35, 41, 54, 76,
14, 21, 25, 32, 44, 63, 92, 136,
19, 28, 32, 41, 54, 75, 107, 157,
26, 35, 44, 54, 70, 95, 132, 190,
38, 41, 63, 75, 95, 125, 170, 239,
57, 54, 92, 107, 132, 170, 227, 312,
86, 76, 136, 157, 190, 239, 312, 419
},
{
/* DCTune perceptual optimization of compressed dental X-Rays (1997) Watson, Taylor, Borthwick
*/
7, 8, 10, 14, 23, 44, 95, 241,
8, 8, 11, 15, 25, 47, 102, 255,
10, 11, 13, 19, 31, 58, 127, 255,
14, 15, 19, 27, 44, 83, 181, 255,
23, 25, 31, 44, 72, 136, 255, 255,
44, 47, 58, 83, 136, 255, 255, 255,
95, 102, 127, 181, 255, 255, 255, 255,
241, 255, 255, 255, 255, 255, 255, 255
},
{
/* A visual detection model for DCT coefficient quantization (12/9/93) Ahumada, Watson, Peterson
*/
15, 11, 11, 12, 15, 19, 25, 32,
11, 13, 10, 10, 12, 15, 19, 24,
11, 10, 14, 14, 16, 18, 22, 27,
12, 10, 14, 18, 21, 24, 28, 33,
15, 12, 16, 21, 26, 31, 36, 42,
19, 15, 18, 24, 31, 38, 45, 53,
25, 19, 22, 28, 36, 45, 55, 65,
32, 24, 27, 33, 42, 53, 65, 77
},
{
/* An improved detection model for DCT coefficient quantization (1993) Peterson, Ahumada and Watson
*/
14, 10, 11, 14, 19, 25, 34, 45,
10, 11, 11, 12, 15, 20, 26, 33,
11, 11, 15, 18, 21, 25, 31, 38,
14, 12, 18, 24, 28, 33, 39, 47,
19, 15, 21, 28, 36, 43, 51, 59,
25, 20, 25, 33, 43, 54, 64, 74,
34, 26, 31, 39, 51, 64, 77, 91,
45, 33, 38, 47, 59, 74, 91, 108
}
};
static const unsigned int std_chrominance_quant_tbl[9][DCTSIZE2] = {
{
/* JPEG Annex K
*/
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
},
{
/* flat
*/
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16
},
{
8, 12, 15, 15, 86, 96, 96, 98,
13, 13, 15, 26, 90, 96, 99, 98,
12, 15, 18, 96, 99, 99, 99, 99,
17, 16, 90, 96, 99, 99, 99, 99,
96, 96, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
},
{
/* From http://www.imagemagick.org/discourse-server/viewtopic.php?f=22&t=20333&p=98008#p98008
*/
16, 16, 16, 18, 25, 37, 56, 85,
16, 17, 20, 27, 34, 40, 53, 75,
16, 20, 24, 31, 43, 62, 91, 135,
18, 27, 31, 40, 53, 74, 106, 156,
25, 34, 43, 53, 69, 94, 131, 189,
37, 40, 62, 74, 94, 124, 169, 238,
56, 53, 91, 106, 131, 169, 226, 311,
85, 75, 135, 156, 189, 238, 311, 418
},
{
9, 10, 17, 19, 62, 89, 91, 97,
12, 13, 18, 29, 84, 91, 88, 98,
14, 19, 29, 93, 95, 95, 98, 97,
20, 26, 84, 88, 95, 95, 98, 94,
26, 86, 91, 93, 97, 99, 98, 99,
99, 100, 98, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
97, 97, 99, 99, 99, 99, 97, 99
},
{
/* Relevance of human vision to JPEG-DCT compression (1992) Klein, Silverstein and Carney.
* Copied from luma
*/
10, 12, 14, 19, 26, 38, 57, 86,
12, 18, 21, 28, 35, 41, 54, 76,
14, 21, 25, 32, 44, 63, 92, 136,
19, 28, 32, 41, 54, 75, 107, 157,
26, 35, 44, 54, 70, 95, 132, 190,
38, 41, 63, 75, 95, 125, 170, 239,
57, 54, 92, 107, 132, 170, 227, 312,
86, 76, 136, 157, 190, 239, 312, 419
},
{
/* DCTune perceptual optimization of compressed dental X-Rays (1997) Watson, Taylor, Borthwick
* Copied from luma
*/
7, 8, 10, 14, 23, 44, 95, 241,
8, 8, 11, 15, 25, 47, 102, 255,
10, 11, 13, 19, 31, 58, 127, 255,
14, 15, 19, 27, 44, 83, 181, 255,
23, 25, 31, 44, 72, 136, 255, 255,
44, 47, 58, 83, 136, 255, 255, 255,
95, 102, 127, 181, 255, 255, 255, 255,
241, 255, 255, 255, 255, 255, 255, 255
},
{
/* A visual detection model for DCT coefficient quantization (12/9/93) Ahumada, Watson, Peterson
* Copied from luma
*/
15, 11, 11, 12, 15, 19, 25, 32,
11, 13, 10, 10, 12, 15, 19, 24,
11, 10, 14, 14, 16, 18, 22, 27,
12, 10, 14, 18, 21, 24, 28, 33,
15, 12, 16, 21, 26, 31, 36, 42,
19, 15, 18, 24, 31, 38, 45, 53,
25, 19, 22, 28, 36, 45, 55, 65,
32, 24, 27, 33, 42, 53, 65, 77
},
{
/* An improved detection model for DCT coefficient quantization (1993) Peterson, Ahumada and Watson
* Copied from luma
*/
14, 10, 11, 14, 19, 25, 34, 45,
10, 11, 11, 12, 15, 20, 26, 33,
11, 11, 15, 18, 21, 25, 31, 38,
14, 12, 18, 24, 28, 33, 39, 47,
19, 15, 21, 28, 36, 43, 51, 59,
25, 20, 25, 33, 43, 54, 64, 74,
34, 26, 31, 39, 51, 64, 77, 91,
45, 33, 38, 47, 59, 74, 91, 108
}
};
#if JPEG_LIB_VERSION >= 70
GLOBAL(void)
jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables
* and straight percentage-scaling quality scales.
* This entry point allows different scalings for luminance and chrominance.
*/
{
/* Set up two quantization tables using the specified scaling */
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl[cinfo->master->quant_tbl_master_idx],
cinfo->q_scale_factor[0], force_baseline);
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl[cinfo->master->quant_tbl_master_idx],
cinfo->q_scale_factor[1], force_baseline);
}
#endif
GLOBAL(void)
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables
* and a straight percentage-scaling quality scale. In most cases it's better
* to use jpeg_set_quality (below); this entry point is provided for
* applications that insist on a linear percentage scaling.
*/
{
/* Set up two quantization tables using the specified scaling */
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl[cinfo->master->quant_tbl_master_idx],
scale_factor, force_baseline);
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl[cinfo->master->quant_tbl_master_idx],
scale_factor, force_baseline);
}
GLOBAL(int)
jpeg_quality_scaling (int quality)
{
return jpeg_float_quality_scaling(quality);
}
GLOBAL(float)
jpeg_float_quality_scaling(float quality)
/* Convert a user-specified quality rating to a percentage scaling factor
* for an underlying quantization table, using our recommended scaling curve.
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
*/
{
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
if (quality <= 0.f) quality = 1.f;
if (quality > 100.f) quality = 100.f;
/* The basic table is used as-is (scaling 100) for a quality of 50.
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
* to make all the table entries 1 (hence, minimum quantization loss).
* Qualities 1..50 are converted to scaling percentage 5000/Q.
*/
if (quality < 50.f)
quality = 5000.f / quality;
else
quality = 200.f - quality*2.f;
return quality;
}
GLOBAL(void)
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables.
* This is the standard quality-adjusting entry point for typical user
* interfaces; only those who want detailed control over quantization tables
* would use the preceding three routines directly.
*/
{
/* Convert user 0-100 rating to percentage scaling */
quality = jpeg_quality_scaling(quality);
/* Set up standard quality tables */
jpeg_set_linear_quality(cinfo, quality, force_baseline);
}
/*
* Default parameter setup for compression.
*
* Applications that don't choose to use this routine must do their
* own setup of all these parameters. Alternately, you can call this
* to establish defaults and then alter parameters selectively. This
* is the recommended approach since, if we add any new parameters,
* your code will still work (they'll be set to reasonable defaults).
*/
GLOBAL(void)
jpeg_set_defaults (j_compress_ptr cinfo)
{
int i;
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Allocate comp_info array large enough for maximum component count.
* Array is made permanent in case application wants to compress
* multiple images at same param settings.
*/
if (cinfo->comp_info == NULL)
cinfo->comp_info = (jpeg_component_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
MAX_COMPONENTS * sizeof(jpeg_component_info));
/* Initialize everything not dependent on the color space */
#if JPEG_LIB_VERSION >= 70
cinfo->scale_num = 1; /* 1:1 scaling */
cinfo->scale_denom = 1;
#endif
cinfo->data_precision = BITS_IN_JSAMPLE;
/* Set up two quantization tables using default quality of 75 */
jpeg_set_quality(cinfo, 75, TRUE);
/* Set up two Huffman tables */
std_huff_tables((j_common_ptr) cinfo);
/* Initialize default arithmetic coding conditioning */
for (i = 0; i < NUM_ARITH_TBLS; i++) {
cinfo->arith_dc_L[i] = 0;
cinfo->arith_dc_U[i] = 1;
cinfo->arith_ac_K[i] = 5;
}
/* Default is no multiple-scan output */
cinfo->scan_info = NULL;
cinfo->num_scans = 0;
/* Expect normal source image, not raw downsampled data */
cinfo->raw_data_in = FALSE;
/* Use Huffman coding, not arithmetic coding, by default */
cinfo->arith_code = FALSE;
#ifdef ENTROPY_OPT_SUPPORTED
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION)
/* By default, do extra passes to optimize entropy coding */
cinfo->optimize_coding = TRUE;
else
/* By default, don't do extra passes to optimize entropy coding */
cinfo->optimize_coding = FALSE;
#else
/* By default, don't do extra passes to optimize entropy coding */
cinfo->optimize_coding = FALSE;
#endif
/* The standard Huffman tables are only valid for 8-bit data precision.
* If the precision is higher, force optimization on so that usable
* tables will be computed. This test can be removed if default tables
* are supplied that are valid for the desired precision.
*/
if (cinfo->data_precision > 8)
cinfo->optimize_coding = TRUE;
/* By default, use the simpler non-cosited sampling alignment */
cinfo->CCIR601_sampling = FALSE;
#if JPEG_LIB_VERSION >= 70
/* By default, apply fancy downsampling */
cinfo->do_fancy_downsampling = TRUE;
#endif
cinfo->master->overshoot_deringing =
cinfo->master->compress_profile == JCP_MAX_COMPRESSION;
/* No input smoothing */
cinfo->smoothing_factor = 0;
/* DCT algorithm preference */
cinfo->dct_method = JDCT_DEFAULT;
/* No restart markers */
cinfo->restart_interval = 0;
cinfo->restart_in_rows = 0;
/* Fill in default JFIF marker parameters. Note that whether the marker
* will actually be written is determined by jpeg_set_colorspace.
*
* By default, the library emits JFIF version code 1.01.
* An application that wants to emit JFIF 1.02 extension markers should set
* JFIF_minor_version to 2. We could probably get away with just defaulting
* to 1.02, but there may still be some decoders in use that will complain
* about that; saying 1.01 should minimize compatibility problems.
*/
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
cinfo->JFIF_minor_version = 1;
cinfo->density_unit = 0; /* Pixel size is unknown by default */
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
cinfo->Y_density = 1;
/* Choose JPEG colorspace based on input space, set defaults accordingly */
jpeg_default_colorspace(cinfo);
cinfo->master->dc_scan_opt_mode = 1;
#ifdef C_PROGRESSIVE_SUPPORTED
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
cinfo->master->optimize_scans = TRUE;
jpeg_simple_progression(cinfo);
} else
cinfo->master->optimize_scans = FALSE;
#endif
cinfo->master->trellis_quant =
cinfo->master->compress_profile == JCP_MAX_COMPRESSION;
cinfo->master->lambda_log_scale1 = 14.75;
cinfo->master->lambda_log_scale2 = 16.5;
cinfo->master->quant_tbl_master_idx =
cinfo->master->compress_profile == JCP_MAX_COMPRESSION ? 3 : 0;
cinfo->master->use_lambda_weight_tbl = TRUE;
cinfo->master->use_scans_in_trellis = FALSE;
cinfo->master->trellis_freq_split = 8;
cinfo->master->trellis_num_loops = 1;
cinfo->master->trellis_q_opt = FALSE;
cinfo->master->trellis_quant_dc = TRUE;
cinfo->master->trellis_delta_dc_weight = 0.0;
}
/*
* Select an appropriate JPEG colorspace for in_color_space.
*/
GLOBAL(void)
jpeg_default_colorspace (j_compress_ptr cinfo)
{
switch (cinfo->in_color_space) {
case JCS_GRAYSCALE:
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
break;
case JCS_RGB:
case JCS_EXT_RGB:
case JCS_EXT_RGBX:
case JCS_EXT_BGR:
case JCS_EXT_BGRX:
case JCS_EXT_XBGR:
case JCS_EXT_XRGB:
case JCS_EXT_RGBA:
case JCS_EXT_BGRA:
case JCS_EXT_ABGR:
case JCS_EXT_ARGB:
jpeg_set_colorspace(cinfo, JCS_YCbCr);
break;
case JCS_YCbCr:
jpeg_set_colorspace(cinfo, JCS_YCbCr);
break;
case JCS_CMYK:
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
break;
case JCS_YCCK:
jpeg_set_colorspace(cinfo, JCS_YCCK);
break;
case JCS_UNKNOWN:
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
break;
default:
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
}
}
/*
* Set the JPEG colorspace, and choose colorspace-dependent default values.
*/
GLOBAL(void)
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
{
jpeg_component_info *compptr;
int ci;
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
(compptr = &cinfo->comp_info[index], \
compptr->component_id = (id), \
compptr->h_samp_factor = (hsamp), \
compptr->v_samp_factor = (vsamp), \
compptr->quant_tbl_no = (quant), \
compptr->dc_tbl_no = (dctbl), \
compptr->ac_tbl_no = (actbl) )
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
* tables 1 for chrominance components.
*/
cinfo->jpeg_color_space = colorspace;
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
switch (colorspace) {
case JCS_GRAYSCALE:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->num_components = 1;
/* JFIF specifies component ID 1 */
SET_COMP(0, 1, 1,1, 0, 0,0);
break;
case JCS_RGB:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
cinfo->num_components = 3;
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
break;
case JCS_YCbCr:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->num_components = 3;
/* JFIF specifies component IDs 1,2,3 */
/* We default to 2x2 subsamples of chrominance */
SET_COMP(0, 1, 2,2, 0, 0,0);
SET_COMP(1, 2, 1,1, 1, 1,1);
SET_COMP(2, 3, 1,1, 1, 1,1);
break;
case JCS_CMYK:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
cinfo->num_components = 4;
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
break;
case JCS_YCCK:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
cinfo->num_components = 4;
SET_COMP(0, 1, 2,2, 0, 0,0);
SET_COMP(1, 2, 1,1, 1, 1,1);
SET_COMP(2, 3, 1,1, 1, 1,1);
SET_COMP(3, 4, 2,2, 0, 0,0);
break;
case JCS_UNKNOWN:
cinfo->num_components = cinfo->input_components;
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
for (ci = 0; ci < cinfo->num_components; ci++) {
SET_COMP(ci, ci, 1,1, 0, 0,0);
}
break;
default:
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
}
}
#ifdef C_PROGRESSIVE_SUPPORTED
LOCAL(jpeg_scan_info *)
fill_a_scan(jpeg_scan_info *scanptr, int ci, int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for specified component */
{
scanptr->comps_in_scan = 1;
scanptr->component_index[0] = ci;
scanptr->Ss = Ss;
scanptr->Se = Se;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
return scanptr;
}
LOCAL(jpeg_scan_info *)
fill_a_scan_pair (jpeg_scan_info * scanptr, int ci,
int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for pair of components */
{
scanptr->comps_in_scan = 2;
scanptr->component_index[0] = ci;
scanptr->component_index[1] = ci + 1;
scanptr->Ss = Ss;
scanptr->Se = Se;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
return scanptr;
}
LOCAL(jpeg_scan_info *)
fill_scans (jpeg_scan_info *scanptr, int ncomps,
int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for each component */
{
int ci;
for (ci = 0; ci < ncomps; ci++) {
scanptr->comps_in_scan = 1;
scanptr->component_index[0] = ci;
scanptr->Ss = Ss;
scanptr->Se = Se;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
}
return scanptr;
}
LOCAL(jpeg_scan_info *)
fill_dc_scans (jpeg_scan_info *scanptr, int ncomps, int Ah, int Al)
/* Support routine: generate interleaved DC scan if possible, else N scans */
{
int ci;
if (ncomps <= MAX_COMPS_IN_SCAN) {
/* Single interleaved DC scan */
scanptr->comps_in_scan = ncomps;
for (ci = 0; ci < ncomps; ci++)
scanptr->component_index[ci] = ci;
scanptr->Ss = scanptr->Se = 0;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
} else {
/* Noninterleaved DC scan for each component */
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
}
return scanptr;
}
/*
* List of scans to be tested
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
*/
LOCAL(boolean)
jpeg_search_progression (j_compress_ptr cinfo)
{
int ncomps = cinfo->num_components;
int nscans;
jpeg_scan_info * scanptr;
int Al;
int frequency_split[] = { 2, 8, 5, 12, 18 };
int i;
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Figure space needed for script. Calculation must match code below! */
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
/* Custom script for YCbCr color images. */
nscans = 64;
} else if (ncomps == 1) {
nscans = 23;
} else {
cinfo->master->num_scans_luma = 0;
return FALSE;
}
/* Allocate space for script.
* We need to put it in the permanent pool in case the application performs
* multiple compressions without changing the settings. To avoid a memory
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
* object, we try to re-use previously allocated space, and we allocate
* enough space to handle YCbCr even if initially asked for grayscale.
*/
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
cinfo->script_space_size = MAX(nscans, 64);
cinfo->script_space = (jpeg_scan_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
cinfo->script_space_size * sizeof(jpeg_scan_info));
}
scanptr = cinfo->script_space;
cinfo->scan_info = scanptr;
cinfo->num_scans = nscans;
cinfo->master->Al_max_luma = 3;
cinfo->master->num_scans_luma_dc = 1;
cinfo->master->num_frequency_splits = 5;
cinfo->master->num_scans_luma =
cinfo->master->num_scans_luma_dc + (3 * cinfo->master->Al_max_luma + 2) +
(2 * cinfo->master->num_frequency_splits + 1);
/* 23 scans for luma */
/* 1 scan for DC */
/* 11 scans to determine successive approximation */
/* 11 scans to determine frequency approximation */
/* after 12 scans need to update following 11 */
/* after 23 scans need to determine which to keep */
/* last 4 done conditionally */
/* luma DC by itself */
if (cinfo->master->dc_scan_opt_mode == 0)
scanptr = fill_dc_scans(scanptr, ncomps, 0, 0);
else
scanptr = fill_dc_scans(scanptr, 1, 0, 0);
scanptr = fill_a_scan(scanptr, 0, 1, 8, 0, 0);
scanptr = fill_a_scan(scanptr, 0, 9, 63, 0, 0);
for (Al = 0; Al < cinfo->master->Al_max_luma; Al++) {
scanptr = fill_a_scan(scanptr, 0, 1, 63, Al+1, Al);
scanptr = fill_a_scan(scanptr, 0, 1, 8, 0, Al+1);
scanptr = fill_a_scan(scanptr, 0, 9, 63, 0, Al+1);
}
scanptr = fill_a_scan(scanptr, 0, 1, 63, 0, 0);
for (i = 0; i < cinfo->master->num_frequency_splits; i++) {
scanptr = fill_a_scan(scanptr, 0, 1, frequency_split[i], 0, 0);
scanptr = fill_a_scan(scanptr, 0, frequency_split[i]+1, 63, 0, 0);
}
if (ncomps == 1) {
cinfo->master->Al_max_chroma = 0;
cinfo->master->num_scans_chroma_dc = 0;
} else {
cinfo->master->Al_max_chroma = 2;
cinfo->master->num_scans_chroma_dc = 3;
/* 41 scans for chroma */
/* chroma DC combined */
scanptr = fill_a_scan_pair(scanptr, 1, 0, 0, 0, 0);
/* chroma DC separate */
scanptr = fill_a_scan(scanptr, 1, 0, 0, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 0, 0, 0, 0);
scanptr = fill_a_scan(scanptr, 1, 1, 8, 0, 0);
scanptr = fill_a_scan(scanptr, 1, 9, 63, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 1, 8, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 9, 63, 0, 0);
for (Al = 0; Al < cinfo->master->Al_max_chroma; Al++) {
scanptr = fill_a_scan(scanptr, 1, 1, 63, Al+1, Al);
scanptr = fill_a_scan(scanptr, 2, 1, 63, Al+1, Al);
scanptr = fill_a_scan(scanptr, 1, 1, 8, 0, Al+1);
scanptr = fill_a_scan(scanptr, 1, 9, 63, 0, Al+1);
scanptr = fill_a_scan(scanptr, 2, 1, 8, 0, Al+1);
scanptr = fill_a_scan(scanptr, 2, 9, 63, 0, Al+1);
}
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 0);
for (i = 0; i < cinfo->master->num_frequency_splits; i++) {
scanptr = fill_a_scan(scanptr, 1, 1, frequency_split[i], 0, 0);
scanptr = fill_a_scan(scanptr, 1, frequency_split[i]+1, 63, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 1, frequency_split[i], 0, 0);
scanptr = fill_a_scan(scanptr, 2, frequency_split[i]+1, 63, 0, 0);
}
}
return TRUE;
}
/*
* Create a recommended progressive-JPEG script.
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
*/
GLOBAL(void)
jpeg_simple_progression (j_compress_ptr cinfo)
{
int ncomps;
int nscans;
jpeg_scan_info *scanptr;
if (cinfo->master->optimize_scans) {
if (jpeg_search_progression(cinfo) == TRUE)
return;
}
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Figure space needed for script. Calculation must match code below! */
ncomps = cinfo->num_components;
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
/* Custom script for YCbCr color images. */
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
if (cinfo->master->dc_scan_opt_mode == 0) {
nscans = 9; /* 1 DC scan for all components */
} else if (cinfo->master->dc_scan_opt_mode == 1) {
nscans = 11; /* 1 DC scan for each component */
} else {
nscans = 10; /* 1 DC scan for luminance and 1 DC scan for chroma */
}
} else {
nscans = 10; /* 2 DC scans and 8 AC scans */
}
} else {
/* All-purpose script for other color spaces. */
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
if (ncomps > MAX_COMPS_IN_SCAN)
nscans = 5 * ncomps; /* 2 DC + 4 AC scans per component */
else
nscans = 1 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
} else {
if (ncomps > MAX_COMPS_IN_SCAN)
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
else
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
}
}
/* Allocate space for script.
* We need to put it in the permanent pool in case the application performs
* multiple compressions without changing the settings. To avoid a memory
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
* object, we try to re-use previously allocated space, and we allocate
* enough space to handle YCbCr even if initially asked for grayscale.
*/
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
cinfo->script_space_size = MAX(nscans, 10);
cinfo->script_space = (jpeg_scan_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
cinfo->script_space_size * sizeof(jpeg_scan_info));
}
scanptr = cinfo->script_space;
cinfo->scan_info = scanptr;
cinfo->num_scans = nscans;
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
/* Custom script for YCbCr color images. */
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
/* scan defined in jpeg_scan_rgb.txt in jpgcrush */
/* Initial DC scan */
if (cinfo->master->dc_scan_opt_mode == 0) {
/* 1 DC scan for all components */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 0);
} else if (cinfo->master->dc_scan_opt_mode == 1) {
/* 1 DC scan for each component */
scanptr = fill_a_scan(scanptr, 0, 0, 0, 0, 0);
scanptr = fill_a_scan(scanptr, 1, 0, 0, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 0, 0, 0, 0);
} else {
/* 1 DC scan for luminance and 1 DC scan for chroma */
scanptr = fill_dc_scans(scanptr, 1, 0, 0);
scanptr = fill_a_scan_pair(scanptr, 1, 0, 0, 0, 0);
}
/* Low frequency AC scans */
scanptr = fill_a_scan(scanptr, 0, 1, 8, 0, 2);
scanptr = fill_a_scan(scanptr, 1, 1, 8, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 1, 8, 0, 0);
/* Complete spectral selection for luma AC */
scanptr = fill_a_scan(scanptr, 0, 9, 63, 0, 2);
/* Finish luma AC successive approximation */
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
/* Complete spectral selection for chroma AC */
scanptr = fill_a_scan(scanptr, 1, 9, 63, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 9, 63, 0, 0);
} else {
/* Initial DC scan */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
/* Initial AC scan: get some luma data out in a hurry */
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
/* Chroma data is too small to be worth expending many scans on */
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
/* Complete spectral selection for luma AC */
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
/* Refine next bit of luma AC */
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
/* Finish DC successive approximation */
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
/* Finish AC successive approximation */
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
/* Luma bottom bit comes last since it's usually largest scan */
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
}
} else {
/* All-purpose script for other color spaces. */
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
/* scan defined in jpeg_scan_bw.txt in jpgcrush */
/* DC component, no successive approximation */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 0);
/* Successive approximation first pass */
scanptr = fill_scans(scanptr, ncomps, 1, 8, 0, 2);
scanptr = fill_scans(scanptr, ncomps, 9, 63, 0, 2);
/* Successive approximation second pass */
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
/* Successive approximation final pass */
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
} else {
/* Successive approximation first pass */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
/* Successive approximation second pass */
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
/* Successive approximation final pass */
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
}
}
}
#endif /* C_PROGRESSIVE_SUPPORTED */