256 lines
11 KiB
C++
256 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "common_video/h264/sps_parser.h"
|
|
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
#include "common_video/h264/h264_common.h"
|
|
#include "rtc_base/bit_buffer.h"
|
|
|
|
namespace {
|
|
typedef absl::optional<webrtc::SpsParser::SpsState> OptionalSps;
|
|
|
|
#define RETURN_EMPTY_ON_FAIL(x) \
|
|
if (!(x)) { \
|
|
return OptionalSps(); \
|
|
}
|
|
|
|
constexpr int kScalingDeltaMin = -128;
|
|
constexpr int kScaldingDeltaMax = 127;
|
|
} // namespace
|
|
|
|
namespace webrtc {
|
|
|
|
SpsParser::SpsState::SpsState() = default;
|
|
SpsParser::SpsState::SpsState(const SpsState&) = default;
|
|
SpsParser::SpsState::~SpsState() = default;
|
|
|
|
// General note: this is based off the 02/2014 version of the H.264 standard.
|
|
// You can find it on this page:
|
|
// http://www.itu.int/rec/T-REC-H.264
|
|
|
|
// Unpack RBSP and parse SPS state from the supplied buffer.
|
|
absl::optional<SpsParser::SpsState> SpsParser::ParseSps(const uint8_t* data,
|
|
size_t length) {
|
|
std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length);
|
|
rtc::BitBuffer bit_buffer(unpacked_buffer.data(), unpacked_buffer.size());
|
|
return ParseSpsUpToVui(&bit_buffer);
|
|
}
|
|
|
|
absl::optional<SpsParser::SpsState> SpsParser::ParseSpsUpToVui(
|
|
rtc::BitBuffer* buffer) {
|
|
// Now, we need to use a bit buffer to parse through the actual AVC SPS
|
|
// format. See Section 7.3.2.1.1 ("Sequence parameter set data syntax") of the
|
|
// H.264 standard for a complete description.
|
|
// Since we only care about resolution, we ignore the majority of fields, but
|
|
// we still have to actively parse through a lot of the data, since many of
|
|
// the fields have variable size.
|
|
// We're particularly interested in:
|
|
// chroma_format_idc -> affects crop units
|
|
// pic_{width,height}_* -> resolution of the frame in macroblocks (16x16).
|
|
// frame_crop_*_offset -> crop information
|
|
|
|
SpsState sps;
|
|
|
|
// The golomb values we have to read, not just consume.
|
|
uint32_t golomb_ignored;
|
|
|
|
// chroma_format_idc will be ChromaArrayType if separate_colour_plane_flag is
|
|
// 0. It defaults to 1, when not specified.
|
|
uint32_t chroma_format_idc = 1;
|
|
|
|
// profile_idc: u(8). We need it to determine if we need to read/skip chroma
|
|
// formats.
|
|
uint8_t profile_idc;
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadUInt8(&profile_idc));
|
|
// constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits
|
|
// 1 bit each for the flags + 2 bits = 8 bits = 1 byte.
|
|
RETURN_EMPTY_ON_FAIL(buffer->ConsumeBytes(1));
|
|
// level_idc: u(8)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ConsumeBytes(1));
|
|
// seq_parameter_set_id: ue(v)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&sps.id));
|
|
sps.separate_colour_plane_flag = 0;
|
|
// See if profile_idc has chroma format information.
|
|
if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 ||
|
|
profile_idc == 244 || profile_idc == 44 || profile_idc == 83 ||
|
|
profile_idc == 86 || profile_idc == 118 || profile_idc == 128 ||
|
|
profile_idc == 138 || profile_idc == 139 || profile_idc == 134) {
|
|
// chroma_format_idc: ue(v)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&chroma_format_idc));
|
|
if (chroma_format_idc == 3) {
|
|
// separate_colour_plane_flag: u(1)
|
|
RETURN_EMPTY_ON_FAIL(
|
|
buffer->ReadBits(&sps.separate_colour_plane_flag, 1));
|
|
}
|
|
// bit_depth_luma_minus8: ue(v)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored));
|
|
// bit_depth_chroma_minus8: ue(v)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored));
|
|
// qpprime_y_zero_transform_bypass_flag: u(1)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1));
|
|
// seq_scaling_matrix_present_flag: u(1)
|
|
uint32_t seq_scaling_matrix_present_flag;
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&seq_scaling_matrix_present_flag, 1));
|
|
if (seq_scaling_matrix_present_flag) {
|
|
// Process the scaling lists just enough to be able to properly
|
|
// skip over them, so we can still read the resolution on streams
|
|
// where this is included.
|
|
int scaling_list_count = (chroma_format_idc == 3 ? 12 : 8);
|
|
for (int i = 0; i < scaling_list_count; ++i) {
|
|
// seq_scaling_list_present_flag[i] : u(1)
|
|
uint32_t seq_scaling_list_present_flags;
|
|
RETURN_EMPTY_ON_FAIL(
|
|
buffer->ReadBits(&seq_scaling_list_present_flags, 1));
|
|
if (seq_scaling_list_present_flags != 0) {
|
|
int last_scale = 8;
|
|
int next_scale = 8;
|
|
int size_of_scaling_list = i < 6 ? 16 : 64;
|
|
for (int j = 0; j < size_of_scaling_list; j++) {
|
|
if (next_scale != 0) {
|
|
int32_t delta_scale;
|
|
// delta_scale: se(v)
|
|
RETURN_EMPTY_ON_FAIL(
|
|
buffer->ReadSignedExponentialGolomb(&delta_scale));
|
|
RETURN_EMPTY_ON_FAIL(delta_scale >= kScalingDeltaMin &&
|
|
delta_scale <= kScaldingDeltaMax);
|
|
next_scale = (last_scale + delta_scale + 256) % 256;
|
|
}
|
|
if (next_scale != 0)
|
|
last_scale = next_scale;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// log2_max_frame_num and log2_max_pic_order_cnt_lsb are used with
|
|
// BitBuffer::ReadBits, which can read at most 32 bits at a time. We also have
|
|
// to avoid overflow when adding 4 to the on-wire golomb value, e.g., for evil
|
|
// input data, ReadExponentialGolomb might return 0xfffc.
|
|
const uint32_t kMaxLog2Minus4 = 32 - 4;
|
|
|
|
// log2_max_frame_num_minus4: ue(v)
|
|
uint32_t log2_max_frame_num_minus4;
|
|
if (!buffer->ReadExponentialGolomb(&log2_max_frame_num_minus4) ||
|
|
log2_max_frame_num_minus4 > kMaxLog2Minus4) {
|
|
return OptionalSps();
|
|
}
|
|
sps.log2_max_frame_num = log2_max_frame_num_minus4 + 4;
|
|
|
|
// pic_order_cnt_type: ue(v)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&sps.pic_order_cnt_type));
|
|
if (sps.pic_order_cnt_type == 0) {
|
|
// log2_max_pic_order_cnt_lsb_minus4: ue(v)
|
|
uint32_t log2_max_pic_order_cnt_lsb_minus4;
|
|
if (!buffer->ReadExponentialGolomb(&log2_max_pic_order_cnt_lsb_minus4) ||
|
|
log2_max_pic_order_cnt_lsb_minus4 > kMaxLog2Minus4) {
|
|
return OptionalSps();
|
|
}
|
|
sps.log2_max_pic_order_cnt_lsb = log2_max_pic_order_cnt_lsb_minus4 + 4;
|
|
} else if (sps.pic_order_cnt_type == 1) {
|
|
// delta_pic_order_always_zero_flag: u(1)
|
|
RETURN_EMPTY_ON_FAIL(
|
|
buffer->ReadBits(&sps.delta_pic_order_always_zero_flag, 1));
|
|
// offset_for_non_ref_pic: se(v)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored));
|
|
// offset_for_top_to_bottom_field: se(v)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored));
|
|
// num_ref_frames_in_pic_order_cnt_cycle: ue(v)
|
|
uint32_t num_ref_frames_in_pic_order_cnt_cycle;
|
|
RETURN_EMPTY_ON_FAIL(
|
|
buffer->ReadExponentialGolomb(&num_ref_frames_in_pic_order_cnt_cycle));
|
|
for (size_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; ++i) {
|
|
// offset_for_ref_frame[i]: se(v)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored));
|
|
}
|
|
}
|
|
// max_num_ref_frames: ue(v)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&sps.max_num_ref_frames));
|
|
// gaps_in_frame_num_value_allowed_flag: u(1)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1));
|
|
//
|
|
// IMPORTANT ONES! Now we're getting to resolution. First we read the pic
|
|
// width/height in macroblocks (16x16), which gives us the base resolution,
|
|
// and then we continue on until we hit the frame crop offsets, which are used
|
|
// to signify resolutions that aren't multiples of 16.
|
|
//
|
|
// pic_width_in_mbs_minus1: ue(v)
|
|
uint32_t pic_width_in_mbs_minus1;
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&pic_width_in_mbs_minus1));
|
|
// pic_height_in_map_units_minus1: ue(v)
|
|
uint32_t pic_height_in_map_units_minus1;
|
|
RETURN_EMPTY_ON_FAIL(
|
|
buffer->ReadExponentialGolomb(&pic_height_in_map_units_minus1));
|
|
// frame_mbs_only_flag: u(1)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&sps.frame_mbs_only_flag, 1));
|
|
if (!sps.frame_mbs_only_flag) {
|
|
// mb_adaptive_frame_field_flag: u(1)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1));
|
|
}
|
|
// direct_8x8_inference_flag: u(1)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1));
|
|
//
|
|
// MORE IMPORTANT ONES! Now we're at the frame crop information.
|
|
//
|
|
// frame_cropping_flag: u(1)
|
|
uint32_t frame_cropping_flag;
|
|
uint32_t frame_crop_left_offset = 0;
|
|
uint32_t frame_crop_right_offset = 0;
|
|
uint32_t frame_crop_top_offset = 0;
|
|
uint32_t frame_crop_bottom_offset = 0;
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&frame_cropping_flag, 1));
|
|
if (frame_cropping_flag) {
|
|
// frame_crop_{left, right, top, bottom}_offset: ue(v)
|
|
RETURN_EMPTY_ON_FAIL(
|
|
buffer->ReadExponentialGolomb(&frame_crop_left_offset));
|
|
RETURN_EMPTY_ON_FAIL(
|
|
buffer->ReadExponentialGolomb(&frame_crop_right_offset));
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&frame_crop_top_offset));
|
|
RETURN_EMPTY_ON_FAIL(
|
|
buffer->ReadExponentialGolomb(&frame_crop_bottom_offset));
|
|
}
|
|
// vui_parameters_present_flag: u(1)
|
|
RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&sps.vui_params_present, 1));
|
|
|
|
// Far enough! We don't use the rest of the SPS.
|
|
|
|
// Start with the resolution determined by the pic_width/pic_height fields.
|
|
sps.width = 16 * (pic_width_in_mbs_minus1 + 1);
|
|
sps.height =
|
|
16 * (2 - sps.frame_mbs_only_flag) * (pic_height_in_map_units_minus1 + 1);
|
|
|
|
// Figure out the crop units in pixels. That's based on the chroma format's
|
|
// sampling, which is indicated by chroma_format_idc.
|
|
if (sps.separate_colour_plane_flag || chroma_format_idc == 0) {
|
|
frame_crop_bottom_offset *= (2 - sps.frame_mbs_only_flag);
|
|
frame_crop_top_offset *= (2 - sps.frame_mbs_only_flag);
|
|
} else if (!sps.separate_colour_plane_flag && chroma_format_idc > 0) {
|
|
// Width multipliers for formats 1 (4:2:0) and 2 (4:2:2).
|
|
if (chroma_format_idc == 1 || chroma_format_idc == 2) {
|
|
frame_crop_left_offset *= 2;
|
|
frame_crop_right_offset *= 2;
|
|
}
|
|
// Height multipliers for format 1 (4:2:0).
|
|
if (chroma_format_idc == 1) {
|
|
frame_crop_top_offset *= 2;
|
|
frame_crop_bottom_offset *= 2;
|
|
}
|
|
}
|
|
// Subtract the crop for each dimension.
|
|
sps.width -= (frame_crop_left_offset + frame_crop_right_offset);
|
|
sps.height -= (frame_crop_top_offset + frame_crop_bottom_offset);
|
|
|
|
return OptionalSps(sps);
|
|
}
|
|
|
|
} // namespace webrtc
|