628 lines
17 KiB
C
628 lines
17 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
* All rights reserved.
|
||
*
|
||
* This package is an SSL implementation written
|
||
* by Eric Young (eay@cryptsoft.com).
|
||
* The implementation was written so as to conform with Netscapes SSL.
|
||
*
|
||
* This library is free for commercial and non-commercial use as long as
|
||
* the following conditions are aheared to. The following conditions
|
||
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
* included with this distribution is covered by the same copyright terms
|
||
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
*
|
||
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
* the code are not to be removed.
|
||
* If this package is used in a product, Eric Young should be given attribution
|
||
* as the author of the parts of the library used.
|
||
* This can be in the form of a textual message at program startup or
|
||
* in documentation (online or textual) provided with the package.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* 3. All advertising materials mentioning features or use of this software
|
||
* must display the following acknowledgement:
|
||
* "This product includes cryptographic software written by
|
||
* Eric Young (eay@cryptsoft.com)"
|
||
* The word 'cryptographic' can be left out if the rouines from the library
|
||
* being used are not cryptographic related :-).
|
||
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
* the apps directory (application code) you must include an acknowledgement:
|
||
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*
|
||
* The licence and distribution terms for any publically available version or
|
||
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
* copied and put under another distribution licence
|
||
* [including the GNU Public Licence.]
|
||
*/
|
||
/* ====================================================================
|
||
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
*
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
*
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in
|
||
* the documentation and/or other materials provided with the
|
||
* distribution.
|
||
*
|
||
* 3. All advertising materials mentioning features or use of this
|
||
* software must display the following acknowledgment:
|
||
* "This product includes software developed by the OpenSSL Project
|
||
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
||
*
|
||
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||
* endorse or promote products derived from this software without
|
||
* prior written permission. For written permission, please contact
|
||
* openssl-core@openssl.org.
|
||
*
|
||
* 5. Products derived from this software may not be called "OpenSSL"
|
||
* nor may "OpenSSL" appear in their names without prior written
|
||
* permission of the OpenSSL Project.
|
||
*
|
||
* 6. Redistributions of any form whatsoever must retain the following
|
||
* acknowledgment:
|
||
* "This product includes software developed by the OpenSSL Project
|
||
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
* ====================================================================
|
||
*
|
||
* This product includes cryptographic software written by Eric Young
|
||
* (eay@cryptsoft.com). This product includes software written by Tim
|
||
* Hudson (tjh@cryptsoft.com). */
|
||
|
||
#include <openssl/bn.h>
|
||
|
||
#include <assert.h>
|
||
|
||
#include <openssl/err.h>
|
||
|
||
#include "internal.h"
|
||
|
||
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) {
|
||
BIGNUM *t;
|
||
int shifts = 0;
|
||
|
||
// 0 <= b <= a
|
||
while (!BN_is_zero(b)) {
|
||
// 0 < b <= a
|
||
|
||
if (BN_is_odd(a)) {
|
||
if (BN_is_odd(b)) {
|
||
if (!BN_sub(a, a, b)) {
|
||
goto err;
|
||
}
|
||
if (!BN_rshift1(a, a)) {
|
||
goto err;
|
||
}
|
||
if (BN_cmp(a, b) < 0) {
|
||
t = a;
|
||
a = b;
|
||
b = t;
|
||
}
|
||
} else {
|
||
// a odd - b even
|
||
if (!BN_rshift1(b, b)) {
|
||
goto err;
|
||
}
|
||
if (BN_cmp(a, b) < 0) {
|
||
t = a;
|
||
a = b;
|
||
b = t;
|
||
}
|
||
}
|
||
} else {
|
||
// a is even
|
||
if (BN_is_odd(b)) {
|
||
if (!BN_rshift1(a, a)) {
|
||
goto err;
|
||
}
|
||
if (BN_cmp(a, b) < 0) {
|
||
t = a;
|
||
a = b;
|
||
b = t;
|
||
}
|
||
} else {
|
||
// a even - b even
|
||
if (!BN_rshift1(a, a)) {
|
||
goto err;
|
||
}
|
||
if (!BN_rshift1(b, b)) {
|
||
goto err;
|
||
}
|
||
shifts++;
|
||
}
|
||
}
|
||
// 0 <= b <= a
|
||
}
|
||
|
||
if (shifts) {
|
||
if (!BN_lshift(a, a, shifts)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
return a;
|
||
|
||
err:
|
||
return NULL;
|
||
}
|
||
|
||
int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) {
|
||
BIGNUM *a, *b, *t;
|
||
int ret = 0;
|
||
|
||
BN_CTX_start(ctx);
|
||
a = BN_CTX_get(ctx);
|
||
b = BN_CTX_get(ctx);
|
||
|
||
if (a == NULL || b == NULL) {
|
||
goto err;
|
||
}
|
||
if (BN_copy(a, in_a) == NULL) {
|
||
goto err;
|
||
}
|
||
if (BN_copy(b, in_b) == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
a->neg = 0;
|
||
b->neg = 0;
|
||
|
||
if (BN_cmp(a, b) < 0) {
|
||
t = a;
|
||
a = b;
|
||
b = t;
|
||
}
|
||
t = euclid(a, b);
|
||
if (t == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
if (BN_copy(r, t) == NULL) {
|
||
goto err;
|
||
}
|
||
ret = 1;
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
// solves ax == 1 (mod n)
|
||
static int bn_mod_inverse_general(BIGNUM *out, int *out_no_inverse,
|
||
const BIGNUM *a, const BIGNUM *n,
|
||
BN_CTX *ctx);
|
||
|
||
int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
|
||
const BIGNUM *n, BN_CTX *ctx) {
|
||
*out_no_inverse = 0;
|
||
|
||
if (!BN_is_odd(n)) {
|
||
OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
|
||
return 0;
|
||
}
|
||
|
||
if (BN_is_negative(a) || BN_cmp(a, n) >= 0) {
|
||
OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
|
||
return 0;
|
||
}
|
||
|
||
BIGNUM *A, *B, *X, *Y;
|
||
int ret = 0;
|
||
int sign;
|
||
|
||
BN_CTX_start(ctx);
|
||
A = BN_CTX_get(ctx);
|
||
B = BN_CTX_get(ctx);
|
||
X = BN_CTX_get(ctx);
|
||
Y = BN_CTX_get(ctx);
|
||
if (Y == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
BIGNUM *R = out;
|
||
|
||
BN_zero(Y);
|
||
if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) {
|
||
goto err;
|
||
}
|
||
A->neg = 0;
|
||
sign = -1;
|
||
// From B = a mod |n|, A = |n| it follows that
|
||
//
|
||
// 0 <= B < A,
|
||
// -sign*X*a == B (mod |n|),
|
||
// sign*Y*a == A (mod |n|).
|
||
|
||
// Binary inversion algorithm; requires odd modulus. This is faster than the
|
||
// general algorithm if the modulus is sufficiently small (about 400 .. 500
|
||
// bits on 32-bit systems, but much more on 64-bit systems)
|
||
int shift;
|
||
|
||
while (!BN_is_zero(B)) {
|
||
// 0 < B < |n|,
|
||
// 0 < A <= |n|,
|
||
// (1) -sign*X*a == B (mod |n|),
|
||
// (2) sign*Y*a == A (mod |n|)
|
||
|
||
// Now divide B by the maximum possible power of two in the integers,
|
||
// and divide X by the same value mod |n|.
|
||
// When we're done, (1) still holds.
|
||
shift = 0;
|
||
while (!BN_is_bit_set(B, shift)) {
|
||
// note that 0 < B
|
||
shift++;
|
||
|
||
if (BN_is_odd(X)) {
|
||
if (!BN_uadd(X, X, n)) {
|
||
goto err;
|
||
}
|
||
}
|
||
// now X is even, so we can easily divide it by two
|
||
if (!BN_rshift1(X, X)) {
|
||
goto err;
|
||
}
|
||
}
|
||
if (shift > 0) {
|
||
if (!BN_rshift(B, B, shift)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
// Same for A and Y. Afterwards, (2) still holds.
|
||
shift = 0;
|
||
while (!BN_is_bit_set(A, shift)) {
|
||
// note that 0 < A
|
||
shift++;
|
||
|
||
if (BN_is_odd(Y)) {
|
||
if (!BN_uadd(Y, Y, n)) {
|
||
goto err;
|
||
}
|
||
}
|
||
// now Y is even
|
||
if (!BN_rshift1(Y, Y)) {
|
||
goto err;
|
||
}
|
||
}
|
||
if (shift > 0) {
|
||
if (!BN_rshift(A, A, shift)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
// We still have (1) and (2).
|
||
// Both A and B are odd.
|
||
// The following computations ensure that
|
||
//
|
||
// 0 <= B < |n|,
|
||
// 0 < A < |n|,
|
||
// (1) -sign*X*a == B (mod |n|),
|
||
// (2) sign*Y*a == A (mod |n|),
|
||
//
|
||
// and that either A or B is even in the next iteration.
|
||
if (BN_ucmp(B, A) >= 0) {
|
||
// -sign*(X + Y)*a == B - A (mod |n|)
|
||
if (!BN_uadd(X, X, Y)) {
|
||
goto err;
|
||
}
|
||
// NB: we could use BN_mod_add_quick(X, X, Y, n), but that
|
||
// actually makes the algorithm slower
|
||
if (!BN_usub(B, B, A)) {
|
||
goto err;
|
||
}
|
||
} else {
|
||
// sign*(X + Y)*a == A - B (mod |n|)
|
||
if (!BN_uadd(Y, Y, X)) {
|
||
goto err;
|
||
}
|
||
// as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
|
||
if (!BN_usub(A, A, B)) {
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!BN_is_one(A)) {
|
||
*out_no_inverse = 1;
|
||
OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
|
||
goto err;
|
||
}
|
||
|
||
// The while loop (Euclid's algorithm) ends when
|
||
// A == gcd(a,n);
|
||
// we have
|
||
// sign*Y*a == A (mod |n|),
|
||
// where Y is non-negative.
|
||
|
||
if (sign < 0) {
|
||
if (!BN_sub(Y, n, Y)) {
|
||
goto err;
|
||
}
|
||
}
|
||
// Now Y*a == A (mod |n|).
|
||
|
||
// Y*a == 1 (mod |n|)
|
||
if (!Y->neg && BN_ucmp(Y, n) < 0) {
|
||
if (!BN_copy(R, Y)) {
|
||
goto err;
|
||
}
|
||
} else {
|
||
if (!BN_nnmod(R, Y, n, ctx)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
ret = 1;
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n,
|
||
BN_CTX *ctx) {
|
||
BIGNUM *new_out = NULL;
|
||
if (out == NULL) {
|
||
new_out = BN_new();
|
||
if (new_out == NULL) {
|
||
OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
|
||
return NULL;
|
||
}
|
||
out = new_out;
|
||
}
|
||
|
||
int ok = 0;
|
||
BIGNUM *a_reduced = NULL;
|
||
if (a->neg || BN_ucmp(a, n) >= 0) {
|
||
a_reduced = BN_dup(a);
|
||
if (a_reduced == NULL) {
|
||
goto err;
|
||
}
|
||
if (!BN_nnmod(a_reduced, a_reduced, n, ctx)) {
|
||
goto err;
|
||
}
|
||
a = a_reduced;
|
||
}
|
||
|
||
int no_inverse;
|
||
if (!BN_is_odd(n)) {
|
||
if (!bn_mod_inverse_general(out, &no_inverse, a, n, ctx)) {
|
||
goto err;
|
||
}
|
||
} else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) {
|
||
goto err;
|
||
}
|
||
|
||
ok = 1;
|
||
|
||
err:
|
||
if (!ok) {
|
||
BN_free(new_out);
|
||
out = NULL;
|
||
}
|
||
BN_free(a_reduced);
|
||
return out;
|
||
}
|
||
|
||
int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
|
||
const BN_MONT_CTX *mont, BN_CTX *ctx) {
|
||
*out_no_inverse = 0;
|
||
|
||
if (BN_is_negative(a) || BN_cmp(a, &mont->N) >= 0) {
|
||
OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
|
||
return 0;
|
||
}
|
||
|
||
int ret = 0;
|
||
BIGNUM blinding_factor;
|
||
BN_init(&blinding_factor);
|
||
|
||
if (!BN_rand_range_ex(&blinding_factor, 1, &mont->N) ||
|
||
!BN_mod_mul_montgomery(out, &blinding_factor, a, mont, ctx) ||
|
||
!BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) ||
|
||
!BN_mod_mul_montgomery(out, &blinding_factor, out, mont, ctx)) {
|
||
OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
|
||
ret = 1;
|
||
|
||
err:
|
||
BN_free(&blinding_factor);
|
||
return ret;
|
||
}
|
||
|
||
// bn_mod_inverse_general is the general inversion algorithm that works for
|
||
// both even and odd |n|. It was specifically designed to contain fewer
|
||
// branches that may leak sensitive information; see "New Branch Prediction
|
||
// Vulnerabilities in OpenSSL and Necessary Software Countermeasures" by
|
||
// Onur Acıçmez, Shay Gueron, and Jean-Pierre Seifert.
|
||
static int bn_mod_inverse_general(BIGNUM *out, int *out_no_inverse,
|
||
const BIGNUM *a, const BIGNUM *n,
|
||
BN_CTX *ctx) {
|
||
BIGNUM *A, *B, *X, *Y, *M, *D, *T;
|
||
int ret = 0;
|
||
int sign;
|
||
|
||
*out_no_inverse = 0;
|
||
|
||
BN_CTX_start(ctx);
|
||
A = BN_CTX_get(ctx);
|
||
B = BN_CTX_get(ctx);
|
||
X = BN_CTX_get(ctx);
|
||
D = BN_CTX_get(ctx);
|
||
M = BN_CTX_get(ctx);
|
||
Y = BN_CTX_get(ctx);
|
||
T = BN_CTX_get(ctx);
|
||
if (T == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
BIGNUM *R = out;
|
||
|
||
BN_zero(Y);
|
||
if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) {
|
||
goto err;
|
||
}
|
||
A->neg = 0;
|
||
|
||
sign = -1;
|
||
// From B = a mod |n|, A = |n| it follows that
|
||
//
|
||
// 0 <= B < A,
|
||
// -sign*X*a == B (mod |n|),
|
||
// sign*Y*a == A (mod |n|).
|
||
|
||
while (!BN_is_zero(B)) {
|
||
BIGNUM *tmp;
|
||
|
||
// 0 < B < A,
|
||
// (*) -sign*X*a == B (mod |n|),
|
||
// sign*Y*a == A (mod |n|)
|
||
|
||
// (D, M) := (A/B, A%B) ...
|
||
if (!BN_div(D, M, A, B, ctx)) {
|
||
goto err;
|
||
}
|
||
|
||
// Now
|
||
// A = D*B + M;
|
||
// thus we have
|
||
// (**) sign*Y*a == D*B + M (mod |n|).
|
||
|
||
tmp = A; // keep the BIGNUM object, the value does not matter
|
||
|
||
// (A, B) := (B, A mod B) ...
|
||
A = B;
|
||
B = M;
|
||
// ... so we have 0 <= B < A again
|
||
|
||
// Since the former M is now B and the former B is now A,
|
||
// (**) translates into
|
||
// sign*Y*a == D*A + B (mod |n|),
|
||
// i.e.
|
||
// sign*Y*a - D*A == B (mod |n|).
|
||
// Similarly, (*) translates into
|
||
// -sign*X*a == A (mod |n|).
|
||
//
|
||
// Thus,
|
||
// sign*Y*a + D*sign*X*a == B (mod |n|),
|
||
// i.e.
|
||
// sign*(Y + D*X)*a == B (mod |n|).
|
||
//
|
||
// So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
|
||
// -sign*X*a == B (mod |n|),
|
||
// sign*Y*a == A (mod |n|).
|
||
// Note that X and Y stay non-negative all the time.
|
||
|
||
if (!BN_mul(tmp, D, X, ctx)) {
|
||
goto err;
|
||
}
|
||
if (!BN_add(tmp, tmp, Y)) {
|
||
goto err;
|
||
}
|
||
|
||
M = Y; // keep the BIGNUM object, the value does not matter
|
||
Y = X;
|
||
X = tmp;
|
||
sign = -sign;
|
||
}
|
||
|
||
if (!BN_is_one(A)) {
|
||
*out_no_inverse = 1;
|
||
OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
|
||
goto err;
|
||
}
|
||
|
||
// The while loop (Euclid's algorithm) ends when
|
||
// A == gcd(a,n);
|
||
// we have
|
||
// sign*Y*a == A (mod |n|),
|
||
// where Y is non-negative.
|
||
|
||
if (sign < 0) {
|
||
if (!BN_sub(Y, n, Y)) {
|
||
goto err;
|
||
}
|
||
}
|
||
// Now Y*a == A (mod |n|).
|
||
|
||
// Y*a == 1 (mod |n|)
|
||
if (!Y->neg && BN_ucmp(Y, n) < 0) {
|
||
if (!BN_copy(R, Y)) {
|
||
goto err;
|
||
}
|
||
} else {
|
||
if (!BN_nnmod(R, Y, n, ctx)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
ret = 1;
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
|
||
BN_CTX *ctx, const BN_MONT_CTX *mont_p) {
|
||
BN_CTX_start(ctx);
|
||
BIGNUM *p_minus_2 = BN_CTX_get(ctx);
|
||
int ok = p_minus_2 != NULL &&
|
||
BN_copy(p_minus_2, p) &&
|
||
BN_sub_word(p_minus_2, 2) &&
|
||
BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p);
|
||
BN_CTX_end(ctx);
|
||
return ok;
|
||
}
|
||
|
||
int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
|
||
BN_CTX *ctx, const BN_MONT_CTX *mont_p) {
|
||
BN_CTX_start(ctx);
|
||
BIGNUM *p_minus_2 = BN_CTX_get(ctx);
|
||
int ok = p_minus_2 != NULL &&
|
||
BN_copy(p_minus_2, p) &&
|
||
BN_sub_word(p_minus_2, 2) &&
|
||
BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p);
|
||
BN_CTX_end(ctx);
|
||
return ok;
|
||
}
|