457 lines
14 KiB
C++
457 lines
14 KiB
C++
// Copyright 2019 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/message_loop/message_pump_kqueue.h"
|
|
|
|
#include <sys/errno.h>
|
|
|
|
#include "base/auto_reset.h"
|
|
#include "base/logging.h"
|
|
#include "base/mac/mac_util.h"
|
|
#include "base/mac/mach_logging.h"
|
|
#include "base/mac/scoped_nsautorelease_pool.h"
|
|
#include "base/posix/eintr_wrapper.h"
|
|
|
|
namespace base {
|
|
|
|
namespace {
|
|
|
|
// Prior to macOS 10.12, a kqueue could not watch individual Mach ports, only
|
|
// port sets. MessagePumpKqueue will directly use Mach ports in the kqueue if
|
|
// it is possible.
|
|
bool KqueueNeedsPortSet() {
|
|
static bool kqueue_needs_port_set = mac::IsAtMostOS10_11();
|
|
return kqueue_needs_port_set;
|
|
}
|
|
|
|
int ChangeOneEvent(const ScopedFD& kqueue, kevent64_s* event) {
|
|
return HANDLE_EINTR(kevent64(kqueue.get(), event, 1, nullptr, 0, 0, nullptr));
|
|
}
|
|
|
|
} // namespace
|
|
|
|
MessagePumpKqueue::FdWatchController::FdWatchController(
|
|
const Location& from_here)
|
|
: FdWatchControllerInterface(from_here) {}
|
|
|
|
MessagePumpKqueue::FdWatchController::~FdWatchController() {
|
|
StopWatchingFileDescriptor();
|
|
}
|
|
|
|
bool MessagePumpKqueue::FdWatchController::StopWatchingFileDescriptor() {
|
|
if (!pump_)
|
|
return true;
|
|
return pump_->StopWatchingFileDescriptor(this);
|
|
}
|
|
|
|
void MessagePumpKqueue::FdWatchController::Init(WeakPtr<MessagePumpKqueue> pump,
|
|
int fd,
|
|
int mode,
|
|
FdWatcher* watcher) {
|
|
DCHECK_NE(fd, -1);
|
|
DCHECK(!watcher_);
|
|
DCHECK(watcher);
|
|
DCHECK(pump);
|
|
fd_ = fd;
|
|
mode_ = mode;
|
|
watcher_ = watcher;
|
|
pump_ = pump;
|
|
}
|
|
|
|
void MessagePumpKqueue::FdWatchController::Reset() {
|
|
fd_ = -1;
|
|
mode_ = 0;
|
|
watcher_ = nullptr;
|
|
pump_ = nullptr;
|
|
}
|
|
|
|
MessagePumpKqueue::MachPortWatchController::MachPortWatchController(
|
|
const Location& from_here)
|
|
: from_here_(from_here) {}
|
|
|
|
MessagePumpKqueue::MachPortWatchController::~MachPortWatchController() {
|
|
StopWatchingMachPort();
|
|
}
|
|
|
|
bool MessagePumpKqueue::MachPortWatchController::StopWatchingMachPort() {
|
|
if (!pump_)
|
|
return true;
|
|
return pump_->StopWatchingMachPort(this);
|
|
}
|
|
|
|
void MessagePumpKqueue::MachPortWatchController::Init(
|
|
WeakPtr<MessagePumpKqueue> pump,
|
|
mach_port_t port,
|
|
MachPortWatcher* watcher) {
|
|
DCHECK(!watcher_);
|
|
DCHECK(watcher);
|
|
DCHECK(pump);
|
|
port_ = port;
|
|
watcher_ = watcher;
|
|
pump_ = pump;
|
|
}
|
|
|
|
void MessagePumpKqueue::MachPortWatchController::Reset() {
|
|
port_ = MACH_PORT_NULL;
|
|
watcher_ = nullptr;
|
|
pump_ = nullptr;
|
|
}
|
|
|
|
MessagePumpKqueue::MessagePumpKqueue()
|
|
: kqueue_(kqueue()), weak_factory_(this) {
|
|
PCHECK(kqueue_.is_valid()) << "kqueue";
|
|
|
|
// Create a Mach port that will be used to wake up the pump by sending
|
|
// a message in response to ScheduleWork(). This is significantly faster than
|
|
// using an EVFILT_USER event, especially when triggered across threads.
|
|
kern_return_t kr = mach_port_allocate(
|
|
mach_task_self(), MACH_PORT_RIGHT_RECEIVE,
|
|
base::mac::ScopedMachReceiveRight::Receiver(wakeup_).get());
|
|
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_allocate";
|
|
|
|
kevent64_s event{};
|
|
if (KqueueNeedsPortSet()) {
|
|
kr = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_PORT_SET,
|
|
mac::ScopedMachPortSet::Receiver(port_set_).get());
|
|
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_allocate PORT_SET";
|
|
|
|
kr = mach_port_insert_member(mach_task_self(), wakeup_.get(),
|
|
port_set_.get());
|
|
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_insert_member";
|
|
|
|
event.ident = port_set_.get();
|
|
event.filter = EVFILT_MACHPORT;
|
|
event.flags = EV_ADD;
|
|
} else {
|
|
// When not using a port set, the wakeup port event can be specified to
|
|
// directly receive the Mach message as part of the kevent64() syscall.
|
|
// This is not done when using a port set, since that would potentially
|
|
// receive client MachPortWatchers' messages.
|
|
event.ident = wakeup_.get();
|
|
event.filter = EVFILT_MACHPORT;
|
|
event.flags = EV_ADD;
|
|
event.fflags = MACH_RCV_MSG;
|
|
event.ext[0] = reinterpret_cast<uint64_t>(&wakeup_buffer_);
|
|
event.ext[1] = sizeof(wakeup_buffer_);
|
|
}
|
|
|
|
int rv = ChangeOneEvent(kqueue_, &event);
|
|
PCHECK(rv == 0) << "kevent64";
|
|
}
|
|
|
|
MessagePumpKqueue::~MessagePumpKqueue() {}
|
|
|
|
void MessagePumpKqueue::Run(Delegate* delegate) {
|
|
AutoReset<bool> reset_keep_running(&keep_running_, true);
|
|
|
|
while (keep_running_) {
|
|
mac::ScopedNSAutoreleasePool pool;
|
|
|
|
bool do_more_work = DoInternalWork(nullptr);
|
|
if (!keep_running_)
|
|
break;
|
|
|
|
Delegate::NextWorkInfo next_work_info = delegate->DoSomeWork();
|
|
do_more_work |= next_work_info.is_immediate();
|
|
if (!keep_running_)
|
|
break;
|
|
|
|
if (do_more_work)
|
|
continue;
|
|
|
|
do_more_work |= delegate->DoIdleWork();
|
|
if (!keep_running_)
|
|
break;
|
|
|
|
if (do_more_work)
|
|
continue;
|
|
|
|
DoInternalWork(&next_work_info);
|
|
}
|
|
}
|
|
|
|
void MessagePumpKqueue::Quit() {
|
|
keep_running_ = false;
|
|
ScheduleWork();
|
|
}
|
|
|
|
void MessagePumpKqueue::ScheduleWork() {
|
|
mach_msg_empty_send_t message{};
|
|
message.header.msgh_size = sizeof(message);
|
|
message.header.msgh_bits =
|
|
MACH_MSGH_BITS_REMOTE(MACH_MSG_TYPE_MAKE_SEND_ONCE);
|
|
message.header.msgh_remote_port = wakeup_.get();
|
|
kern_return_t kr = mach_msg_send(&message.header);
|
|
if (kr != KERN_SUCCESS) {
|
|
// If ScheduleWork() is being called by other threads faster than the pump
|
|
// can dispatch work, the kernel message queue for the wakeup port can fill
|
|
// up (this happens under base_perftests, for example). The kernel does
|
|
// return a SEND_ONCE right in the case of failure, which must be destroyed
|
|
// to avoid leaking.
|
|
MACH_DLOG_IF(ERROR, (kr & ~MACH_MSG_IPC_SPACE) != MACH_SEND_NO_BUFFER, kr)
|
|
<< "mach_msg_send";
|
|
mach_msg_destroy(&message.header);
|
|
}
|
|
}
|
|
|
|
void MessagePumpKqueue::ScheduleDelayedWork(
|
|
const TimeTicks& delayed_work_time) {
|
|
// Nothing to do. This MessagePump uses DoSomeWork().
|
|
}
|
|
|
|
bool MessagePumpKqueue::WatchMachReceivePort(
|
|
mach_port_t port,
|
|
MachPortWatchController* controller,
|
|
MachPortWatcher* delegate) {
|
|
DCHECK(port != MACH_PORT_NULL);
|
|
DCHECK(controller);
|
|
DCHECK(delegate);
|
|
|
|
if (controller->port() != MACH_PORT_NULL) {
|
|
DLOG(ERROR)
|
|
<< "Cannot use the same MachPortWatchController while it is active";
|
|
return false;
|
|
}
|
|
|
|
if (KqueueNeedsPortSet()) {
|
|
kern_return_t kr =
|
|
mach_port_insert_member(mach_task_self(), port, port_set_.get());
|
|
if (kr != KERN_SUCCESS) {
|
|
MACH_LOG(ERROR, kr) << "mach_port_insert_member";
|
|
return false;
|
|
}
|
|
} else {
|
|
kevent64_s event{};
|
|
event.ident = port;
|
|
event.filter = EVFILT_MACHPORT;
|
|
event.flags = EV_ADD;
|
|
int rv = ChangeOneEvent(kqueue_, &event);
|
|
if (rv < 0) {
|
|
DPLOG(ERROR) << "kevent64";
|
|
return false;
|
|
}
|
|
++event_count_;
|
|
}
|
|
|
|
controller->Init(weak_factory_.GetWeakPtr(), port, delegate);
|
|
port_controllers_.AddWithID(controller, port);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MessagePumpKqueue::WatchFileDescriptor(int fd,
|
|
bool persistent,
|
|
int mode,
|
|
FdWatchController* controller,
|
|
FdWatcher* delegate) {
|
|
DCHECK_GE(fd, 0);
|
|
DCHECK(controller);
|
|
DCHECK(delegate);
|
|
DCHECK_NE(mode & Mode::WATCH_READ_WRITE, 0);
|
|
|
|
if (controller->fd() != -1 && controller->fd() != fd) {
|
|
DLOG(ERROR) << "Cannot use the same FdWatchController on two different FDs";
|
|
return false;
|
|
}
|
|
StopWatchingFileDescriptor(controller);
|
|
|
|
std::vector<kevent64_s> events;
|
|
|
|
kevent64_s base_event{};
|
|
base_event.ident = fd;
|
|
base_event.flags = EV_ADD | (!persistent ? EV_ONESHOT : 0);
|
|
|
|
if (mode & Mode::WATCH_READ) {
|
|
base_event.filter = EVFILT_READ;
|
|
base_event.udata = fd_controllers_.Add(controller);
|
|
events.push_back(base_event);
|
|
}
|
|
if (mode & Mode::WATCH_WRITE) {
|
|
base_event.filter = EVFILT_WRITE;
|
|
base_event.udata = fd_controllers_.Add(controller);
|
|
events.push_back(base_event);
|
|
}
|
|
|
|
int rv = HANDLE_EINTR(kevent64(kqueue_.get(), events.data(), events.size(),
|
|
nullptr, 0, 0, nullptr));
|
|
if (rv < 0) {
|
|
DPLOG(ERROR) << "WatchFileDescriptor kevent64";
|
|
return false;
|
|
}
|
|
|
|
event_count_ += events.size();
|
|
controller->Init(weak_factory_.GetWeakPtr(), fd, mode, delegate);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MessagePumpKqueue::StopWatchingMachPort(
|
|
MachPortWatchController* controller) {
|
|
mach_port_t port = controller->port();
|
|
controller->Reset();
|
|
port_controllers_.Remove(port);
|
|
|
|
if (KqueueNeedsPortSet()) {
|
|
kern_return_t kr =
|
|
mach_port_extract_member(mach_task_self(), port, port_set_.get());
|
|
if (kr != KERN_SUCCESS) {
|
|
MACH_LOG(ERROR, kr) << "mach_port_extract_member";
|
|
return false;
|
|
}
|
|
} else {
|
|
kevent64_s event{};
|
|
event.ident = port;
|
|
event.filter = EVFILT_MACHPORT;
|
|
event.flags = EV_DELETE;
|
|
--event_count_;
|
|
int rv = ChangeOneEvent(kqueue_, &event);
|
|
if (rv < 0) {
|
|
DPLOG(ERROR) << "kevent64";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MessagePumpKqueue::StopWatchingFileDescriptor(
|
|
FdWatchController* controller) {
|
|
int fd = controller->fd();
|
|
int mode = controller->mode();
|
|
controller->Reset();
|
|
|
|
if (fd == -1)
|
|
return true;
|
|
|
|
std::vector<kevent64_s> events;
|
|
|
|
kevent64_s base_event{};
|
|
base_event.ident = fd;
|
|
base_event.flags = EV_DELETE;
|
|
|
|
if (mode & Mode::WATCH_READ) {
|
|
base_event.filter = EVFILT_READ;
|
|
events.push_back(base_event);
|
|
}
|
|
if (mode & Mode::WATCH_WRITE) {
|
|
base_event.filter = EVFILT_WRITE;
|
|
events.push_back(base_event);
|
|
}
|
|
|
|
int rv = HANDLE_EINTR(kevent64(kqueue_.get(), events.data(), events.size(),
|
|
nullptr, 0, 0, nullptr));
|
|
DPLOG_IF(ERROR, rv < 0) << "StopWatchingFileDescriptor kevent64";
|
|
|
|
// The keys for the IDMap aren't recorded anywhere (they're attached to the
|
|
// kevent object in the kernel), so locate the entries by controller pointer.
|
|
for (auto it = IDMap<FdWatchController*>::iterator(&fd_controllers_);
|
|
!it.IsAtEnd(); it.Advance()) {
|
|
if (it.GetCurrentValue() == controller) {
|
|
fd_controllers_.Remove(it.GetCurrentKey());
|
|
}
|
|
}
|
|
|
|
event_count_ -= events.size();
|
|
|
|
return rv >= 0;
|
|
}
|
|
|
|
bool MessagePumpKqueue::DoInternalWork(Delegate::NextWorkInfo* next_work_info) {
|
|
if (events_.size() < event_count_) {
|
|
events_.resize(event_count_);
|
|
}
|
|
|
|
bool poll = next_work_info == nullptr;
|
|
int flags = poll ? KEVENT_FLAG_IMMEDIATE : 0;
|
|
bool indefinite =
|
|
next_work_info != nullptr && next_work_info->delayed_run_time.is_max();
|
|
|
|
int rv = 0;
|
|
do {
|
|
timespec timeout{};
|
|
if (!indefinite && !poll) {
|
|
if (rv != 0) {
|
|
// The wait was interrupted and made |next_work_info|'s view of
|
|
// TimeTicks::Now() stale. Refresh it before doing another wait.
|
|
next_work_info->recent_now = TimeTicks::Now();
|
|
}
|
|
timeout = next_work_info->remaining_delay().ToTimeSpec();
|
|
}
|
|
// This does not use HANDLE_EINTR, since retrying the syscall requires
|
|
// adjusting the timeout to account for time already waited.
|
|
rv = kevent64(kqueue_.get(), nullptr, 0, events_.data(), events_.size(),
|
|
flags, indefinite ? nullptr : &timeout);
|
|
} while (rv < 0 && errno == EINTR);
|
|
|
|
PCHECK(rv >= 0) << "kevent64";
|
|
return ProcessEvents(rv);
|
|
}
|
|
|
|
bool MessagePumpKqueue::ProcessEvents(int count) {
|
|
bool did_work = false;
|
|
|
|
for (int i = 0; i < count; ++i) {
|
|
auto* event = &events_[i];
|
|
if (event->filter == EVFILT_READ || event->filter == EVFILT_WRITE) {
|
|
did_work = true;
|
|
|
|
FdWatchController* controller = fd_controllers_.Lookup(event->udata);
|
|
if (!controller) {
|
|
// The controller was removed by some other work callout before
|
|
// this event could be processed.
|
|
continue;
|
|
}
|
|
FdWatcher* delegate = controller->watcher();
|
|
|
|
if (event->flags & EV_ONESHOT) {
|
|
// If this was a one-shot event, the Controller needs to stop tracking
|
|
// the descriptor, so it is not double-removed when it is told to stop
|
|
// watching.
|
|
controller->Reset();
|
|
fd_controllers_.Remove(event->udata);
|
|
--event_count_;
|
|
}
|
|
|
|
if (event->filter == EVFILT_READ) {
|
|
delegate->OnFileCanReadWithoutBlocking(event->ident);
|
|
} else if (event->filter == EVFILT_WRITE) {
|
|
delegate->OnFileCanWriteWithoutBlocking(event->ident);
|
|
}
|
|
} else if (event->filter == EVFILT_MACHPORT) {
|
|
mach_port_t port = KqueueNeedsPortSet() ? event->data : event->ident;
|
|
|
|
if (port == wakeup_.get()) {
|
|
// The wakeup event has been received, do not treat this as "doing
|
|
// work", this just wakes up the pump.
|
|
if (KqueueNeedsPortSet()) {
|
|
// When using the kqueue directly, the message can be received
|
|
// straight into a buffer that was created when adding the event.
|
|
// But when using a port set, the message must be drained manually.
|
|
wakeup_buffer_.header.msgh_local_port = port;
|
|
wakeup_buffer_.header.msgh_size = sizeof(wakeup_buffer_);
|
|
kern_return_t kr = mach_msg_receive(&wakeup_buffer_.header);
|
|
MACH_LOG_IF(ERROR, kr != KERN_SUCCESS, kr)
|
|
<< "mach_msg_receive wakeup";
|
|
}
|
|
continue;
|
|
}
|
|
|
|
did_work = true;
|
|
|
|
MachPortWatchController* controller = port_controllers_.Lookup(port);
|
|
// The controller could have been removed by some other work callout
|
|
// before this event could be processed.
|
|
if (controller) {
|
|
controller->watcher()->OnMachMessageReceived(port);
|
|
}
|
|
} else {
|
|
NOTREACHED() << "Unexpected event for filter " << event->filter;
|
|
}
|
|
}
|
|
|
|
return did_work;
|
|
}
|
|
|
|
} // namespace base
|