337 lines
12 KiB
C++
337 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_coding/acm2/acm_receiver.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
#include "absl/strings/match.h"
|
|
#include "api/audio/audio_frame.h"
|
|
#include "api/audio_codecs/audio_decoder.h"
|
|
#include "api/neteq/neteq.h"
|
|
#include "modules/audio_coding/acm2/acm_resampler.h"
|
|
#include "modules/audio_coding/acm2/call_statistics.h"
|
|
#include "modules/audio_coding/neteq/default_neteq_factory.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "rtc_base/strings/audio_format_to_string.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace acm2 {
|
|
|
|
namespace {
|
|
|
|
std::unique_ptr<NetEq> CreateNetEq(
|
|
NetEqFactory* neteq_factory,
|
|
const NetEq::Config& config,
|
|
Clock* clock,
|
|
const rtc::scoped_refptr<AudioDecoderFactory>& decoder_factory) {
|
|
if (neteq_factory) {
|
|
return neteq_factory->CreateNetEq(config, decoder_factory, clock);
|
|
}
|
|
return DefaultNetEqFactory().CreateNetEq(config, decoder_factory, clock);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
AcmReceiver::AcmReceiver(const AudioCodingModule::Config& config)
|
|
: last_audio_buffer_(new int16_t[AudioFrame::kMaxDataSizeSamples]),
|
|
neteq_(CreateNetEq(config.neteq_factory,
|
|
config.neteq_config,
|
|
config.clock,
|
|
config.decoder_factory)),
|
|
clock_(config.clock),
|
|
resampled_last_output_frame_(true) {
|
|
RTC_DCHECK(clock_);
|
|
memset(last_audio_buffer_.get(), 0,
|
|
sizeof(int16_t) * AudioFrame::kMaxDataSizeSamples);
|
|
}
|
|
|
|
AcmReceiver::~AcmReceiver() = default;
|
|
|
|
int AcmReceiver::SetMinimumDelay(int delay_ms) {
|
|
if (neteq_->SetMinimumDelay(delay_ms))
|
|
return 0;
|
|
RTC_LOG(LERROR) << "AcmReceiver::SetExtraDelay " << delay_ms;
|
|
return -1;
|
|
}
|
|
|
|
int AcmReceiver::SetMaximumDelay(int delay_ms) {
|
|
if (neteq_->SetMaximumDelay(delay_ms))
|
|
return 0;
|
|
RTC_LOG(LERROR) << "AcmReceiver::SetExtraDelay " << delay_ms;
|
|
return -1;
|
|
}
|
|
|
|
bool AcmReceiver::SetBaseMinimumDelayMs(int delay_ms) {
|
|
return neteq_->SetBaseMinimumDelayMs(delay_ms);
|
|
}
|
|
|
|
int AcmReceiver::GetBaseMinimumDelayMs() const {
|
|
return neteq_->GetBaseMinimumDelayMs();
|
|
}
|
|
|
|
absl::optional<int> AcmReceiver::last_packet_sample_rate_hz() const {
|
|
MutexLock lock(&mutex_);
|
|
if (!last_decoder_) {
|
|
return absl::nullopt;
|
|
}
|
|
return last_decoder_->sample_rate_hz;
|
|
}
|
|
|
|
int AcmReceiver::last_output_sample_rate_hz() const {
|
|
return neteq_->last_output_sample_rate_hz();
|
|
}
|
|
|
|
int AcmReceiver::InsertPacket(const RTPHeader& rtp_header,
|
|
rtc::ArrayView<const uint8_t> incoming_payload) {
|
|
if (incoming_payload.empty()) {
|
|
neteq_->InsertEmptyPacket(rtp_header);
|
|
return 0;
|
|
}
|
|
|
|
int payload_type = rtp_header.payloadType;
|
|
auto format = neteq_->GetDecoderFormat(payload_type);
|
|
if (format && absl::EqualsIgnoreCase(format->sdp_format.name, "red")) {
|
|
// This is a RED packet. Get the format of the audio codec.
|
|
payload_type = incoming_payload[0] & 0x7f;
|
|
format = neteq_->GetDecoderFormat(payload_type);
|
|
}
|
|
if (!format) {
|
|
RTC_LOG_F(LS_ERROR) << "Payload-type " << payload_type
|
|
<< " is not registered.";
|
|
return -1;
|
|
}
|
|
|
|
{
|
|
MutexLock lock(&mutex_);
|
|
if (absl::EqualsIgnoreCase(format->sdp_format.name, "cn")) {
|
|
if (last_decoder_ && last_decoder_->num_channels > 1) {
|
|
// This is a CNG and the audio codec is not mono, so skip pushing in
|
|
// packets into NetEq.
|
|
return 0;
|
|
}
|
|
} else {
|
|
last_decoder_ = DecoderInfo{/*payload_type=*/payload_type,
|
|
/*sample_rate_hz=*/format->sample_rate_hz,
|
|
/*num_channels=*/format->num_channels,
|
|
/*sdp_format=*/std::move(format->sdp_format)};
|
|
}
|
|
} // |mutex_| is released.
|
|
|
|
if (neteq_->InsertPacket(rtp_header, incoming_payload) < 0) {
|
|
RTC_LOG(LERROR) << "AcmReceiver::InsertPacket "
|
|
<< static_cast<int>(rtp_header.payloadType)
|
|
<< " Failed to insert packet";
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int AcmReceiver::GetAudio(int desired_freq_hz,
|
|
AudioFrame* audio_frame,
|
|
bool* muted) {
|
|
RTC_DCHECK(muted);
|
|
// Accessing members, take the lock.
|
|
MutexLock lock(&mutex_);
|
|
|
|
if (neteq_->GetAudio(audio_frame, muted) != NetEq::kOK) {
|
|
RTC_LOG(LERROR) << "AcmReceiver::GetAudio - NetEq Failed.";
|
|
return -1;
|
|
}
|
|
|
|
const int current_sample_rate_hz = neteq_->last_output_sample_rate_hz();
|
|
|
|
// Update if resampling is required.
|
|
const bool need_resampling =
|
|
(desired_freq_hz != -1) && (current_sample_rate_hz != desired_freq_hz);
|
|
|
|
if (need_resampling && !resampled_last_output_frame_) {
|
|
// Prime the resampler with the last frame.
|
|
int16_t temp_output[AudioFrame::kMaxDataSizeSamples];
|
|
int samples_per_channel_int = resampler_.Resample10Msec(
|
|
last_audio_buffer_.get(), current_sample_rate_hz, desired_freq_hz,
|
|
audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples,
|
|
temp_output);
|
|
if (samples_per_channel_int < 0) {
|
|
RTC_LOG(LERROR) << "AcmReceiver::GetAudio - "
|
|
"Resampling last_audio_buffer_ failed.";
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// TODO(henrik.lundin) Glitches in the output may appear if the output rate
|
|
// from NetEq changes. See WebRTC issue 3923.
|
|
if (need_resampling) {
|
|
// TODO(yujo): handle this more efficiently for muted frames.
|
|
int samples_per_channel_int = resampler_.Resample10Msec(
|
|
audio_frame->data(), current_sample_rate_hz, desired_freq_hz,
|
|
audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples,
|
|
audio_frame->mutable_data());
|
|
if (samples_per_channel_int < 0) {
|
|
RTC_LOG(LERROR)
|
|
<< "AcmReceiver::GetAudio - Resampling audio_buffer_ failed.";
|
|
return -1;
|
|
}
|
|
audio_frame->samples_per_channel_ =
|
|
static_cast<size_t>(samples_per_channel_int);
|
|
audio_frame->sample_rate_hz_ = desired_freq_hz;
|
|
RTC_DCHECK_EQ(
|
|
audio_frame->sample_rate_hz_,
|
|
rtc::dchecked_cast<int>(audio_frame->samples_per_channel_ * 100));
|
|
resampled_last_output_frame_ = true;
|
|
} else {
|
|
resampled_last_output_frame_ = false;
|
|
// We might end up here ONLY if codec is changed.
|
|
}
|
|
|
|
// Store current audio in |last_audio_buffer_| for next time.
|
|
memcpy(last_audio_buffer_.get(), audio_frame->data(),
|
|
sizeof(int16_t) * audio_frame->samples_per_channel_ *
|
|
audio_frame->num_channels_);
|
|
|
|
call_stats_.DecodedByNetEq(audio_frame->speech_type_, *muted);
|
|
return 0;
|
|
}
|
|
|
|
void AcmReceiver::SetCodecs(const std::map<int, SdpAudioFormat>& codecs) {
|
|
neteq_->SetCodecs(codecs);
|
|
}
|
|
|
|
void AcmReceiver::FlushBuffers() {
|
|
neteq_->FlushBuffers();
|
|
}
|
|
|
|
void AcmReceiver::RemoveAllCodecs() {
|
|
MutexLock lock(&mutex_);
|
|
neteq_->RemoveAllPayloadTypes();
|
|
last_decoder_ = absl::nullopt;
|
|
}
|
|
|
|
absl::optional<uint32_t> AcmReceiver::GetPlayoutTimestamp() {
|
|
return neteq_->GetPlayoutTimestamp();
|
|
}
|
|
|
|
int AcmReceiver::FilteredCurrentDelayMs() const {
|
|
return neteq_->FilteredCurrentDelayMs();
|
|
}
|
|
|
|
int AcmReceiver::TargetDelayMs() const {
|
|
return neteq_->TargetDelayMs();
|
|
}
|
|
|
|
absl::optional<std::pair<int, SdpAudioFormat>> AcmReceiver::LastDecoder()
|
|
const {
|
|
MutexLock lock(&mutex_);
|
|
if (!last_decoder_) {
|
|
return absl::nullopt;
|
|
}
|
|
RTC_DCHECK_NE(-1, last_decoder_->payload_type);
|
|
return std::make_pair(last_decoder_->payload_type, last_decoder_->sdp_format);
|
|
}
|
|
|
|
void AcmReceiver::GetNetworkStatistics(NetworkStatistics* acm_stat) const {
|
|
NetEqNetworkStatistics neteq_stat;
|
|
// NetEq function always returns zero, so we don't check the return value.
|
|
neteq_->NetworkStatistics(&neteq_stat);
|
|
|
|
acm_stat->currentBufferSize = neteq_stat.current_buffer_size_ms;
|
|
acm_stat->preferredBufferSize = neteq_stat.preferred_buffer_size_ms;
|
|
acm_stat->jitterPeaksFound = neteq_stat.jitter_peaks_found ? true : false;
|
|
acm_stat->currentPacketLossRate = neteq_stat.packet_loss_rate;
|
|
acm_stat->currentExpandRate = neteq_stat.expand_rate;
|
|
acm_stat->currentSpeechExpandRate = neteq_stat.speech_expand_rate;
|
|
acm_stat->currentPreemptiveRate = neteq_stat.preemptive_rate;
|
|
acm_stat->currentAccelerateRate = neteq_stat.accelerate_rate;
|
|
acm_stat->currentSecondaryDecodedRate = neteq_stat.secondary_decoded_rate;
|
|
acm_stat->currentSecondaryDiscardedRate = neteq_stat.secondary_discarded_rate;
|
|
acm_stat->addedSamples = neteq_stat.added_zero_samples;
|
|
acm_stat->meanWaitingTimeMs = neteq_stat.mean_waiting_time_ms;
|
|
acm_stat->medianWaitingTimeMs = neteq_stat.median_waiting_time_ms;
|
|
acm_stat->minWaitingTimeMs = neteq_stat.min_waiting_time_ms;
|
|
acm_stat->maxWaitingTimeMs = neteq_stat.max_waiting_time_ms;
|
|
|
|
NetEqLifetimeStatistics neteq_lifetime_stat = neteq_->GetLifetimeStatistics();
|
|
acm_stat->totalSamplesReceived = neteq_lifetime_stat.total_samples_received;
|
|
acm_stat->concealedSamples = neteq_lifetime_stat.concealed_samples;
|
|
acm_stat->silentConcealedSamples =
|
|
neteq_lifetime_stat.silent_concealed_samples;
|
|
acm_stat->concealmentEvents = neteq_lifetime_stat.concealment_events;
|
|
acm_stat->jitterBufferDelayMs = neteq_lifetime_stat.jitter_buffer_delay_ms;
|
|
acm_stat->jitterBufferTargetDelayMs =
|
|
neteq_lifetime_stat.jitter_buffer_target_delay_ms;
|
|
acm_stat->jitterBufferEmittedCount =
|
|
neteq_lifetime_stat.jitter_buffer_emitted_count;
|
|
acm_stat->delayedPacketOutageSamples =
|
|
neteq_lifetime_stat.delayed_packet_outage_samples;
|
|
acm_stat->relativePacketArrivalDelayMs =
|
|
neteq_lifetime_stat.relative_packet_arrival_delay_ms;
|
|
acm_stat->interruptionCount = neteq_lifetime_stat.interruption_count;
|
|
acm_stat->totalInterruptionDurationMs =
|
|
neteq_lifetime_stat.total_interruption_duration_ms;
|
|
acm_stat->insertedSamplesForDeceleration =
|
|
neteq_lifetime_stat.inserted_samples_for_deceleration;
|
|
acm_stat->removedSamplesForAcceleration =
|
|
neteq_lifetime_stat.removed_samples_for_acceleration;
|
|
acm_stat->fecPacketsReceived = neteq_lifetime_stat.fec_packets_received;
|
|
acm_stat->fecPacketsDiscarded = neteq_lifetime_stat.fec_packets_discarded;
|
|
|
|
NetEqOperationsAndState neteq_operations_and_state =
|
|
neteq_->GetOperationsAndState();
|
|
acm_stat->packetBufferFlushes =
|
|
neteq_operations_and_state.packet_buffer_flushes;
|
|
}
|
|
|
|
int AcmReceiver::EnableNack(size_t max_nack_list_size) {
|
|
neteq_->EnableNack(max_nack_list_size);
|
|
return 0;
|
|
}
|
|
|
|
void AcmReceiver::DisableNack() {
|
|
neteq_->DisableNack();
|
|
}
|
|
|
|
std::vector<uint16_t> AcmReceiver::GetNackList(
|
|
int64_t round_trip_time_ms) const {
|
|
return neteq_->GetNackList(round_trip_time_ms);
|
|
}
|
|
|
|
void AcmReceiver::ResetInitialDelay() {
|
|
neteq_->SetMinimumDelay(0);
|
|
// TODO(turajs): Should NetEq Buffer be flushed?
|
|
}
|
|
|
|
uint32_t AcmReceiver::NowInTimestamp(int decoder_sampling_rate) const {
|
|
// Down-cast the time to (32-6)-bit since we only care about
|
|
// the least significant bits. (32-6) bits cover 2^(32-6) = 67108864 ms.
|
|
// We masked 6 most significant bits of 32-bit so there is no overflow in
|
|
// the conversion from milliseconds to timestamp.
|
|
const uint32_t now_in_ms =
|
|
static_cast<uint32_t>(clock_->TimeInMilliseconds() & 0x03ffffff);
|
|
return static_cast<uint32_t>((decoder_sampling_rate / 1000) * now_in_ms);
|
|
}
|
|
|
|
void AcmReceiver::GetDecodingCallStatistics(
|
|
AudioDecodingCallStats* stats) const {
|
|
MutexLock lock(&mutex_);
|
|
*stats = call_stats_.GetDecodingStatistics();
|
|
}
|
|
|
|
} // namespace acm2
|
|
|
|
} // namespace webrtc
|