910 lines
36 KiB
C++
910 lines
36 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#ifndef MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
|
|
#define MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
|
|
|
|
// MSVC++ requires this to be set before any other includes to get M_PI.
|
|
#ifndef _USE_MATH_DEFINES
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include <stddef.h> // size_t
|
|
#include <stdio.h> // FILE
|
|
#include <string.h>
|
|
|
|
#include <vector>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/array_view.h"
|
|
#include "api/audio/echo_canceller3_config.h"
|
|
#include "api/audio/echo_control.h"
|
|
#include "api/scoped_refptr.h"
|
|
#include "modules/audio_processing/include/audio_processing_statistics.h"
|
|
#include "modules/audio_processing/include/config.h"
|
|
#include "rtc_base/arraysize.h"
|
|
#include "rtc_base/deprecation.h"
|
|
#include "rtc_base/ref_count.h"
|
|
#include "rtc_base/system/file_wrapper.h"
|
|
#include "rtc_base/system/rtc_export.h"
|
|
|
|
namespace rtc {
|
|
class TaskQueue;
|
|
} // namespace rtc
|
|
|
|
namespace webrtc {
|
|
|
|
class AecDump;
|
|
class AudioBuffer;
|
|
|
|
class StreamConfig;
|
|
class ProcessingConfig;
|
|
|
|
class EchoDetector;
|
|
class CustomAudioAnalyzer;
|
|
class CustomProcessing;
|
|
|
|
// Use to enable experimental gain control (AGC). At startup the experimental
|
|
// AGC moves the microphone volume up to |startup_min_volume| if the current
|
|
// microphone volume is set too low. The value is clamped to its operating range
|
|
// [12, 255]. Here, 255 maps to 100%.
|
|
//
|
|
// Must be provided through AudioProcessingBuilder().Create(config).
|
|
#if defined(WEBRTC_CHROMIUM_BUILD)
|
|
static const int kAgcStartupMinVolume = 85;
|
|
#else
|
|
static const int kAgcStartupMinVolume = 0;
|
|
#endif // defined(WEBRTC_CHROMIUM_BUILD)
|
|
static constexpr int kClippedLevelMin = 70;
|
|
|
|
// To be deprecated: Please instead use the flag in the
|
|
// AudioProcessing::Config::AnalogGainController.
|
|
// TODO(webrtc:5298): Remove.
|
|
struct ExperimentalAgc {
|
|
ExperimentalAgc() = default;
|
|
explicit ExperimentalAgc(bool enabled) : enabled(enabled) {}
|
|
ExperimentalAgc(bool enabled,
|
|
bool enabled_agc2_level_estimator,
|
|
bool digital_adaptive_disabled)
|
|
: enabled(enabled),
|
|
enabled_agc2_level_estimator(enabled_agc2_level_estimator),
|
|
digital_adaptive_disabled(digital_adaptive_disabled) {}
|
|
// Deprecated constructor: will be removed.
|
|
ExperimentalAgc(bool enabled,
|
|
bool enabled_agc2_level_estimator,
|
|
bool digital_adaptive_disabled,
|
|
bool analyze_before_aec)
|
|
: enabled(enabled),
|
|
enabled_agc2_level_estimator(enabled_agc2_level_estimator),
|
|
digital_adaptive_disabled(digital_adaptive_disabled) {}
|
|
ExperimentalAgc(bool enabled, int startup_min_volume)
|
|
: enabled(enabled), startup_min_volume(startup_min_volume) {}
|
|
ExperimentalAgc(bool enabled, int startup_min_volume, int clipped_level_min)
|
|
: enabled(enabled),
|
|
startup_min_volume(startup_min_volume),
|
|
clipped_level_min(clipped_level_min) {}
|
|
static const ConfigOptionID identifier = ConfigOptionID::kExperimentalAgc;
|
|
bool enabled = true;
|
|
int startup_min_volume = kAgcStartupMinVolume;
|
|
// Lowest microphone level that will be applied in response to clipping.
|
|
int clipped_level_min = kClippedLevelMin;
|
|
bool enabled_agc2_level_estimator = false;
|
|
bool digital_adaptive_disabled = false;
|
|
};
|
|
|
|
// To be deprecated: Please instead use the flag in the
|
|
// AudioProcessing::Config::TransientSuppression.
|
|
//
|
|
// Use to enable experimental noise suppression. It can be set in the
|
|
// constructor or using AudioProcessing::SetExtraOptions().
|
|
// TODO(webrtc:5298): Remove.
|
|
struct ExperimentalNs {
|
|
ExperimentalNs() : enabled(false) {}
|
|
explicit ExperimentalNs(bool enabled) : enabled(enabled) {}
|
|
static const ConfigOptionID identifier = ConfigOptionID::kExperimentalNs;
|
|
bool enabled;
|
|
};
|
|
|
|
// The Audio Processing Module (APM) provides a collection of voice processing
|
|
// components designed for real-time communications software.
|
|
//
|
|
// APM operates on two audio streams on a frame-by-frame basis. Frames of the
|
|
// primary stream, on which all processing is applied, are passed to
|
|
// |ProcessStream()|. Frames of the reverse direction stream are passed to
|
|
// |ProcessReverseStream()|. On the client-side, this will typically be the
|
|
// near-end (capture) and far-end (render) streams, respectively. APM should be
|
|
// placed in the signal chain as close to the audio hardware abstraction layer
|
|
// (HAL) as possible.
|
|
//
|
|
// On the server-side, the reverse stream will normally not be used, with
|
|
// processing occurring on each incoming stream.
|
|
//
|
|
// Component interfaces follow a similar pattern and are accessed through
|
|
// corresponding getters in APM. All components are disabled at create-time,
|
|
// with default settings that are recommended for most situations. New settings
|
|
// can be applied without enabling a component. Enabling a component triggers
|
|
// memory allocation and initialization to allow it to start processing the
|
|
// streams.
|
|
//
|
|
// Thread safety is provided with the following assumptions to reduce locking
|
|
// overhead:
|
|
// 1. The stream getters and setters are called from the same thread as
|
|
// ProcessStream(). More precisely, stream functions are never called
|
|
// concurrently with ProcessStream().
|
|
// 2. Parameter getters are never called concurrently with the corresponding
|
|
// setter.
|
|
//
|
|
// APM accepts only linear PCM audio data in chunks of 10 ms. The int16
|
|
// interfaces use interleaved data, while the float interfaces use deinterleaved
|
|
// data.
|
|
//
|
|
// Usage example, omitting error checking:
|
|
// AudioProcessing* apm = AudioProcessingBuilder().Create();
|
|
//
|
|
// AudioProcessing::Config config;
|
|
// config.echo_canceller.enabled = true;
|
|
// config.echo_canceller.mobile_mode = false;
|
|
//
|
|
// config.gain_controller1.enabled = true;
|
|
// config.gain_controller1.mode =
|
|
// AudioProcessing::Config::GainController1::kAdaptiveAnalog;
|
|
// config.gain_controller1.analog_level_minimum = 0;
|
|
// config.gain_controller1.analog_level_maximum = 255;
|
|
//
|
|
// config.gain_controller2.enabled = true;
|
|
//
|
|
// config.high_pass_filter.enabled = true;
|
|
//
|
|
// config.voice_detection.enabled = true;
|
|
//
|
|
// apm->ApplyConfig(config)
|
|
//
|
|
// apm->noise_reduction()->set_level(kHighSuppression);
|
|
// apm->noise_reduction()->Enable(true);
|
|
//
|
|
// // Start a voice call...
|
|
//
|
|
// // ... Render frame arrives bound for the audio HAL ...
|
|
// apm->ProcessReverseStream(render_frame);
|
|
//
|
|
// // ... Capture frame arrives from the audio HAL ...
|
|
// // Call required set_stream_ functions.
|
|
// apm->set_stream_delay_ms(delay_ms);
|
|
// apm->set_stream_analog_level(analog_level);
|
|
//
|
|
// apm->ProcessStream(capture_frame);
|
|
//
|
|
// // Call required stream_ functions.
|
|
// analog_level = apm->recommended_stream_analog_level();
|
|
// has_voice = apm->stream_has_voice();
|
|
//
|
|
// // Repeate render and capture processing for the duration of the call...
|
|
// // Start a new call...
|
|
// apm->Initialize();
|
|
//
|
|
// // Close the application...
|
|
// delete apm;
|
|
//
|
|
class RTC_EXPORT AudioProcessing : public rtc::RefCountInterface {
|
|
public:
|
|
// The struct below constitutes the new parameter scheme for the audio
|
|
// processing. It is being introduced gradually and until it is fully
|
|
// introduced, it is prone to change.
|
|
// TODO(peah): Remove this comment once the new config scheme is fully rolled
|
|
// out.
|
|
//
|
|
// The parameters and behavior of the audio processing module are controlled
|
|
// by changing the default values in the AudioProcessing::Config struct.
|
|
// The config is applied by passing the struct to the ApplyConfig method.
|
|
//
|
|
// This config is intended to be used during setup, and to enable/disable
|
|
// top-level processing effects. Use during processing may cause undesired
|
|
// submodule resets, affecting the audio quality. Use the RuntimeSetting
|
|
// construct for runtime configuration.
|
|
struct RTC_EXPORT Config {
|
|
|
|
// Sets the properties of the audio processing pipeline.
|
|
struct RTC_EXPORT Pipeline {
|
|
Pipeline();
|
|
|
|
// Maximum allowed processing rate used internally. May only be set to
|
|
// 32000 or 48000 and any differing values will be treated as 48000. The
|
|
// default rate is currently selected based on the CPU architecture, but
|
|
// that logic may change.
|
|
int maximum_internal_processing_rate;
|
|
// Allow multi-channel processing of render audio.
|
|
bool multi_channel_render = false;
|
|
// Allow multi-channel processing of capture audio when AEC3 is active
|
|
// or a custom AEC is injected..
|
|
bool multi_channel_capture = false;
|
|
} pipeline;
|
|
|
|
// Enabled the pre-amplifier. It amplifies the capture signal
|
|
// before any other processing is done.
|
|
struct PreAmplifier {
|
|
bool enabled = false;
|
|
float fixed_gain_factor = 1.f;
|
|
} pre_amplifier;
|
|
|
|
struct HighPassFilter {
|
|
bool enabled = false;
|
|
bool apply_in_full_band = true;
|
|
} high_pass_filter;
|
|
|
|
struct EchoCanceller {
|
|
bool enabled = false;
|
|
bool mobile_mode = false;
|
|
bool export_linear_aec_output = false;
|
|
// Enforce the highpass filter to be on (has no effect for the mobile
|
|
// mode).
|
|
bool enforce_high_pass_filtering = true;
|
|
} echo_canceller;
|
|
|
|
// Enables background noise suppression.
|
|
struct NoiseSuppression {
|
|
bool enabled = false;
|
|
enum Level { kLow, kModerate, kHigh, kVeryHigh };
|
|
Level level = kModerate;
|
|
bool analyze_linear_aec_output_when_available = false;
|
|
} noise_suppression;
|
|
|
|
// Enables transient suppression.
|
|
struct TransientSuppression {
|
|
bool enabled = false;
|
|
} transient_suppression;
|
|
|
|
// Enables reporting of |voice_detected| in webrtc::AudioProcessingStats.
|
|
struct VoiceDetection {
|
|
bool enabled = false;
|
|
} voice_detection;
|
|
|
|
// Enables automatic gain control (AGC) functionality.
|
|
// The automatic gain control (AGC) component brings the signal to an
|
|
// appropriate range. This is done by applying a digital gain directly and,
|
|
// in the analog mode, prescribing an analog gain to be applied at the audio
|
|
// HAL.
|
|
// Recommended to be enabled on the client-side.
|
|
struct GainController1 {
|
|
bool enabled = false;
|
|
enum Mode {
|
|
// Adaptive mode intended for use if an analog volume control is
|
|
// available on the capture device. It will require the user to provide
|
|
// coupling between the OS mixer controls and AGC through the
|
|
// stream_analog_level() functions.
|
|
// It consists of an analog gain prescription for the audio device and a
|
|
// digital compression stage.
|
|
kAdaptiveAnalog,
|
|
// Adaptive mode intended for situations in which an analog volume
|
|
// control is unavailable. It operates in a similar fashion to the
|
|
// adaptive analog mode, but with scaling instead applied in the digital
|
|
// domain. As with the analog mode, it additionally uses a digital
|
|
// compression stage.
|
|
kAdaptiveDigital,
|
|
// Fixed mode which enables only the digital compression stage also used
|
|
// by the two adaptive modes.
|
|
// It is distinguished from the adaptive modes by considering only a
|
|
// short time-window of the input signal. It applies a fixed gain
|
|
// through most of the input level range, and compresses (gradually
|
|
// reduces gain with increasing level) the input signal at higher
|
|
// levels. This mode is preferred on embedded devices where the capture
|
|
// signal level is predictable, so that a known gain can be applied.
|
|
kFixedDigital
|
|
};
|
|
Mode mode = kAdaptiveAnalog;
|
|
// Sets the target peak level (or envelope) of the AGC in dBFs (decibels
|
|
// from digital full-scale). The convention is to use positive values. For
|
|
// instance, passing in a value of 3 corresponds to -3 dBFs, or a target
|
|
// level 3 dB below full-scale. Limited to [0, 31].
|
|
int target_level_dbfs = 3;
|
|
// Sets the maximum gain the digital compression stage may apply, in dB. A
|
|
// higher number corresponds to greater compression, while a value of 0
|
|
// will leave the signal uncompressed. Limited to [0, 90].
|
|
// For updates after APM setup, use a RuntimeSetting instead.
|
|
int compression_gain_db = 9;
|
|
// When enabled, the compression stage will hard limit the signal to the
|
|
// target level. Otherwise, the signal will be compressed but not limited
|
|
// above the target level.
|
|
bool enable_limiter = true;
|
|
// Sets the minimum and maximum analog levels of the audio capture device.
|
|
// Must be set if an analog mode is used. Limited to [0, 65535].
|
|
int analog_level_minimum = 0;
|
|
int analog_level_maximum = 255;
|
|
|
|
// Enables the analog gain controller functionality.
|
|
struct AnalogGainController {
|
|
bool enabled = true;
|
|
int startup_min_volume = kAgcStartupMinVolume;
|
|
// Lowest analog microphone level that will be applied in response to
|
|
// clipping.
|
|
int clipped_level_min = kClippedLevelMin;
|
|
bool enable_agc2_level_estimator = false;
|
|
bool enable_digital_adaptive = true;
|
|
} analog_gain_controller;
|
|
} gain_controller1;
|
|
|
|
// Enables the next generation AGC functionality. This feature replaces the
|
|
// standard methods of gain control in the previous AGC. Enabling this
|
|
// submodule enables an adaptive digital AGC followed by a limiter. By
|
|
// setting |fixed_gain_db|, the limiter can be turned into a compressor that
|
|
// first applies a fixed gain. The adaptive digital AGC can be turned off by
|
|
// setting |adaptive_digital_mode=false|.
|
|
struct GainController2 {
|
|
enum LevelEstimator { kRms, kPeak };
|
|
bool enabled = false;
|
|
struct {
|
|
float gain_db = 0.f;
|
|
} fixed_digital;
|
|
struct {
|
|
bool enabled = false;
|
|
LevelEstimator level_estimator = kRms;
|
|
bool use_saturation_protector = true;
|
|
float extra_saturation_margin_db = 2.f;
|
|
} adaptive_digital;
|
|
} gain_controller2;
|
|
|
|
struct ResidualEchoDetector {
|
|
bool enabled = true;
|
|
} residual_echo_detector;
|
|
|
|
// Enables reporting of |output_rms_dbfs| in webrtc::AudioProcessingStats.
|
|
struct LevelEstimation {
|
|
bool enabled = false;
|
|
} level_estimation;
|
|
|
|
std::string ToString() const;
|
|
};
|
|
|
|
// TODO(mgraczyk): Remove once all methods that use ChannelLayout are gone.
|
|
enum ChannelLayout {
|
|
kMono,
|
|
// Left, right.
|
|
kStereo,
|
|
// Mono, keyboard, and mic.
|
|
kMonoAndKeyboard,
|
|
// Left, right, keyboard, and mic.
|
|
kStereoAndKeyboard
|
|
};
|
|
|
|
// Specifies the properties of a setting to be passed to AudioProcessing at
|
|
// runtime.
|
|
class RuntimeSetting {
|
|
public:
|
|
enum class Type {
|
|
kNotSpecified,
|
|
kCapturePreGain,
|
|
kCaptureCompressionGain,
|
|
kCaptureFixedPostGain,
|
|
kPlayoutVolumeChange,
|
|
kCustomRenderProcessingRuntimeSetting,
|
|
kPlayoutAudioDeviceChange
|
|
};
|
|
|
|
// Play-out audio device properties.
|
|
struct PlayoutAudioDeviceInfo {
|
|
int id; // Identifies the audio device.
|
|
int max_volume; // Maximum play-out volume.
|
|
};
|
|
|
|
RuntimeSetting() : type_(Type::kNotSpecified), value_(0.f) {}
|
|
~RuntimeSetting() = default;
|
|
|
|
static RuntimeSetting CreateCapturePreGain(float gain) {
|
|
RTC_DCHECK_GE(gain, 1.f) << "Attenuation is not allowed.";
|
|
return {Type::kCapturePreGain, gain};
|
|
}
|
|
|
|
// Corresponds to Config::GainController1::compression_gain_db, but for
|
|
// runtime configuration.
|
|
static RuntimeSetting CreateCompressionGainDb(int gain_db) {
|
|
RTC_DCHECK_GE(gain_db, 0);
|
|
RTC_DCHECK_LE(gain_db, 90);
|
|
return {Type::kCaptureCompressionGain, static_cast<float>(gain_db)};
|
|
}
|
|
|
|
// Corresponds to Config::GainController2::fixed_digital::gain_db, but for
|
|
// runtime configuration.
|
|
static RuntimeSetting CreateCaptureFixedPostGain(float gain_db) {
|
|
RTC_DCHECK_GE(gain_db, 0.f);
|
|
RTC_DCHECK_LE(gain_db, 90.f);
|
|
return {Type::kCaptureFixedPostGain, gain_db};
|
|
}
|
|
|
|
// Creates a runtime setting to notify play-out (aka render) audio device
|
|
// changes.
|
|
static RuntimeSetting CreatePlayoutAudioDeviceChange(
|
|
PlayoutAudioDeviceInfo audio_device) {
|
|
return {Type::kPlayoutAudioDeviceChange, audio_device};
|
|
}
|
|
|
|
// Creates a runtime setting to notify play-out (aka render) volume changes.
|
|
// |volume| is the unnormalized volume, the maximum of which
|
|
static RuntimeSetting CreatePlayoutVolumeChange(int volume) {
|
|
return {Type::kPlayoutVolumeChange, volume};
|
|
}
|
|
|
|
static RuntimeSetting CreateCustomRenderSetting(float payload) {
|
|
return {Type::kCustomRenderProcessingRuntimeSetting, payload};
|
|
}
|
|
|
|
Type type() const { return type_; }
|
|
// Getters do not return a value but instead modify the argument to protect
|
|
// from implicit casting.
|
|
void GetFloat(float* value) const {
|
|
RTC_DCHECK(value);
|
|
*value = value_.float_value;
|
|
}
|
|
void GetInt(int* value) const {
|
|
RTC_DCHECK(value);
|
|
*value = value_.int_value;
|
|
}
|
|
void GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo* value) const {
|
|
RTC_DCHECK(value);
|
|
*value = value_.playout_audio_device_info;
|
|
}
|
|
|
|
private:
|
|
RuntimeSetting(Type id, float value) : type_(id), value_(value) {}
|
|
RuntimeSetting(Type id, int value) : type_(id), value_(value) {}
|
|
RuntimeSetting(Type id, PlayoutAudioDeviceInfo value)
|
|
: type_(id), value_(value) {}
|
|
Type type_;
|
|
union U {
|
|
U() {}
|
|
U(int value) : int_value(value) {}
|
|
U(float value) : float_value(value) {}
|
|
U(PlayoutAudioDeviceInfo value) : playout_audio_device_info(value) {}
|
|
float float_value;
|
|
int int_value;
|
|
PlayoutAudioDeviceInfo playout_audio_device_info;
|
|
} value_;
|
|
};
|
|
|
|
~AudioProcessing() override {}
|
|
|
|
// Initializes internal states, while retaining all user settings. This
|
|
// should be called before beginning to process a new audio stream. However,
|
|
// it is not necessary to call before processing the first stream after
|
|
// creation.
|
|
//
|
|
// It is also not necessary to call if the audio parameters (sample
|
|
// rate and number of channels) have changed. Passing updated parameters
|
|
// directly to |ProcessStream()| and |ProcessReverseStream()| is permissible.
|
|
// If the parameters are known at init-time though, they may be provided.
|
|
virtual int Initialize() = 0;
|
|
|
|
// The int16 interfaces require:
|
|
// - only |NativeRate|s be used
|
|
// - that the input, output and reverse rates must match
|
|
// - that |processing_config.output_stream()| matches
|
|
// |processing_config.input_stream()|.
|
|
//
|
|
// The float interfaces accept arbitrary rates and support differing input and
|
|
// output layouts, but the output must have either one channel or the same
|
|
// number of channels as the input.
|
|
virtual int Initialize(const ProcessingConfig& processing_config) = 0;
|
|
|
|
// Initialize with unpacked parameters. See Initialize() above for details.
|
|
//
|
|
// TODO(mgraczyk): Remove once clients are updated to use the new interface.
|
|
virtual int Initialize(int capture_input_sample_rate_hz,
|
|
int capture_output_sample_rate_hz,
|
|
int render_sample_rate_hz,
|
|
ChannelLayout capture_input_layout,
|
|
ChannelLayout capture_output_layout,
|
|
ChannelLayout render_input_layout) = 0;
|
|
|
|
// TODO(peah): This method is a temporary solution used to take control
|
|
// over the parameters in the audio processing module and is likely to change.
|
|
virtual void ApplyConfig(const Config& config) = 0;
|
|
|
|
// Pass down additional options which don't have explicit setters. This
|
|
// ensures the options are applied immediately.
|
|
virtual void SetExtraOptions(const webrtc::Config& config) = 0;
|
|
|
|
// TODO(ajm): Only intended for internal use. Make private and friend the
|
|
// necessary classes?
|
|
virtual int proc_sample_rate_hz() const = 0;
|
|
virtual int proc_split_sample_rate_hz() const = 0;
|
|
virtual size_t num_input_channels() const = 0;
|
|
virtual size_t num_proc_channels() const = 0;
|
|
virtual size_t num_output_channels() const = 0;
|
|
virtual size_t num_reverse_channels() const = 0;
|
|
|
|
// Set to true when the output of AudioProcessing will be muted or in some
|
|
// other way not used. Ideally, the captured audio would still be processed,
|
|
// but some components may change behavior based on this information.
|
|
// Default false.
|
|
virtual void set_output_will_be_muted(bool muted) = 0;
|
|
|
|
// Enqueue a runtime setting.
|
|
virtual void SetRuntimeSetting(RuntimeSetting setting) = 0;
|
|
|
|
// Accepts and produces a 10 ms frame interleaved 16 bit integer audio as
|
|
// specified in |input_config| and |output_config|. |src| and |dest| may use
|
|
// the same memory, if desired.
|
|
virtual int ProcessStream(const int16_t* const src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
int16_t* const dest) = 0;
|
|
|
|
// Accepts deinterleaved float audio with the range [-1, 1]. Each element of
|
|
// |src| points to a channel buffer, arranged according to |input_stream|. At
|
|
// output, the channels will be arranged according to |output_stream| in
|
|
// |dest|.
|
|
//
|
|
// The output must have one channel or as many channels as the input. |src|
|
|
// and |dest| may use the same memory, if desired.
|
|
virtual int ProcessStream(const float* const* src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
float* const* dest) = 0;
|
|
|
|
// Accepts and produces a 10 ms frame of interleaved 16 bit integer audio for
|
|
// the reverse direction audio stream as specified in |input_config| and
|
|
// |output_config|. |src| and |dest| may use the same memory, if desired.
|
|
virtual int ProcessReverseStream(const int16_t* const src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
int16_t* const dest) = 0;
|
|
|
|
// Accepts deinterleaved float audio with the range [-1, 1]. Each element of
|
|
// |data| points to a channel buffer, arranged according to |reverse_config|.
|
|
virtual int ProcessReverseStream(const float* const* src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
float* const* dest) = 0;
|
|
|
|
// Accepts deinterleaved float audio with the range [-1, 1]. Each element
|
|
// of |data| points to a channel buffer, arranged according to
|
|
// |reverse_config|.
|
|
virtual int AnalyzeReverseStream(const float* const* data,
|
|
const StreamConfig& reverse_config) = 0;
|
|
|
|
// Returns the most recently produced 10 ms of the linear AEC output at a rate
|
|
// of 16 kHz. If there is more than one capture channel, a mono representation
|
|
// of the input is returned. Returns true/false to indicate whether an output
|
|
// returned.
|
|
virtual bool GetLinearAecOutput(
|
|
rtc::ArrayView<std::array<float, 160>> linear_output) const = 0;
|
|
|
|
// This must be called prior to ProcessStream() if and only if adaptive analog
|
|
// gain control is enabled, to pass the current analog level from the audio
|
|
// HAL. Must be within the range provided in Config::GainController1.
|
|
virtual void set_stream_analog_level(int level) = 0;
|
|
|
|
// When an analog mode is set, this should be called after ProcessStream()
|
|
// to obtain the recommended new analog level for the audio HAL. It is the
|
|
// user's responsibility to apply this level.
|
|
virtual int recommended_stream_analog_level() const = 0;
|
|
|
|
// This must be called if and only if echo processing is enabled.
|
|
//
|
|
// Sets the |delay| in ms between ProcessReverseStream() receiving a far-end
|
|
// frame and ProcessStream() receiving a near-end frame containing the
|
|
// corresponding echo. On the client-side this can be expressed as
|
|
// delay = (t_render - t_analyze) + (t_process - t_capture)
|
|
// where,
|
|
// - t_analyze is the time a frame is passed to ProcessReverseStream() and
|
|
// t_render is the time the first sample of the same frame is rendered by
|
|
// the audio hardware.
|
|
// - t_capture is the time the first sample of a frame is captured by the
|
|
// audio hardware and t_process is the time the same frame is passed to
|
|
// ProcessStream().
|
|
virtual int set_stream_delay_ms(int delay) = 0;
|
|
virtual int stream_delay_ms() const = 0;
|
|
|
|
// Call to signal that a key press occurred (true) or did not occur (false)
|
|
// with this chunk of audio.
|
|
virtual void set_stream_key_pressed(bool key_pressed) = 0;
|
|
|
|
// Creates and attaches an webrtc::AecDump for recording debugging
|
|
// information.
|
|
// The |worker_queue| may not be null and must outlive the created
|
|
// AecDump instance. |max_log_size_bytes == -1| means the log size
|
|
// will be unlimited. |handle| may not be null. The AecDump takes
|
|
// responsibility for |handle| and closes it in the destructor. A
|
|
// return value of true indicates that the file has been
|
|
// sucessfully opened, while a value of false indicates that
|
|
// opening the file failed.
|
|
virtual bool CreateAndAttachAecDump(const std::string& file_name,
|
|
int64_t max_log_size_bytes,
|
|
rtc::TaskQueue* worker_queue) = 0;
|
|
virtual bool CreateAndAttachAecDump(FILE* handle,
|
|
int64_t max_log_size_bytes,
|
|
rtc::TaskQueue* worker_queue) = 0;
|
|
|
|
// TODO(webrtc:5298) Deprecated variant.
|
|
// Attaches provided webrtc::AecDump for recording debugging
|
|
// information. Log file and maximum file size logic is supposed to
|
|
// be handled by implementing instance of AecDump. Calling this
|
|
// method when another AecDump is attached resets the active AecDump
|
|
// with a new one. This causes the d-tor of the earlier AecDump to
|
|
// be called. The d-tor call may block until all pending logging
|
|
// tasks are completed.
|
|
virtual void AttachAecDump(std::unique_ptr<AecDump> aec_dump) = 0;
|
|
|
|
// If no AecDump is attached, this has no effect. If an AecDump is
|
|
// attached, it's destructor is called. The d-tor may block until
|
|
// all pending logging tasks are completed.
|
|
virtual void DetachAecDump() = 0;
|
|
|
|
// Get audio processing statistics.
|
|
virtual AudioProcessingStats GetStatistics() = 0;
|
|
// TODO(webrtc:5298) Deprecated variant. The |has_remote_tracks| argument
|
|
// should be set if there are active remote tracks (this would usually be true
|
|
// during a call). If there are no remote tracks some of the stats will not be
|
|
// set by AudioProcessing, because they only make sense if there is at least
|
|
// one remote track.
|
|
virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) = 0;
|
|
|
|
// Returns the last applied configuration.
|
|
virtual AudioProcessing::Config GetConfig() const = 0;
|
|
|
|
enum Error {
|
|
// Fatal errors.
|
|
kNoError = 0,
|
|
kUnspecifiedError = -1,
|
|
kCreationFailedError = -2,
|
|
kUnsupportedComponentError = -3,
|
|
kUnsupportedFunctionError = -4,
|
|
kNullPointerError = -5,
|
|
kBadParameterError = -6,
|
|
kBadSampleRateError = -7,
|
|
kBadDataLengthError = -8,
|
|
kBadNumberChannelsError = -9,
|
|
kFileError = -10,
|
|
kStreamParameterNotSetError = -11,
|
|
kNotEnabledError = -12,
|
|
|
|
// Warnings are non-fatal.
|
|
// This results when a set_stream_ parameter is out of range. Processing
|
|
// will continue, but the parameter may have been truncated.
|
|
kBadStreamParameterWarning = -13
|
|
};
|
|
|
|
// Native rates supported by the integer interfaces.
|
|
enum NativeRate {
|
|
kSampleRate8kHz = 8000,
|
|
kSampleRate16kHz = 16000,
|
|
kSampleRate32kHz = 32000,
|
|
kSampleRate48kHz = 48000
|
|
};
|
|
|
|
// TODO(kwiberg): We currently need to support a compiler (Visual C++) that
|
|
// complains if we don't explicitly state the size of the array here. Remove
|
|
// the size when that's no longer the case.
|
|
static constexpr int kNativeSampleRatesHz[4] = {
|
|
kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz};
|
|
static constexpr size_t kNumNativeSampleRates =
|
|
arraysize(kNativeSampleRatesHz);
|
|
static constexpr int kMaxNativeSampleRateHz =
|
|
kNativeSampleRatesHz[kNumNativeSampleRates - 1];
|
|
|
|
static const int kChunkSizeMs = 10;
|
|
};
|
|
|
|
class RTC_EXPORT AudioProcessingBuilder {
|
|
public:
|
|
AudioProcessingBuilder();
|
|
~AudioProcessingBuilder();
|
|
// The AudioProcessingBuilder takes ownership of the echo_control_factory.
|
|
AudioProcessingBuilder& SetEchoControlFactory(
|
|
std::unique_ptr<EchoControlFactory> echo_control_factory) {
|
|
echo_control_factory_ = std::move(echo_control_factory);
|
|
return *this;
|
|
}
|
|
// The AudioProcessingBuilder takes ownership of the capture_post_processing.
|
|
AudioProcessingBuilder& SetCapturePostProcessing(
|
|
std::unique_ptr<CustomProcessing> capture_post_processing) {
|
|
capture_post_processing_ = std::move(capture_post_processing);
|
|
return *this;
|
|
}
|
|
// The AudioProcessingBuilder takes ownership of the render_pre_processing.
|
|
AudioProcessingBuilder& SetRenderPreProcessing(
|
|
std::unique_ptr<CustomProcessing> render_pre_processing) {
|
|
render_pre_processing_ = std::move(render_pre_processing);
|
|
return *this;
|
|
}
|
|
// The AudioProcessingBuilder takes ownership of the echo_detector.
|
|
AudioProcessingBuilder& SetEchoDetector(
|
|
rtc::scoped_refptr<EchoDetector> echo_detector) {
|
|
echo_detector_ = std::move(echo_detector);
|
|
return *this;
|
|
}
|
|
// The AudioProcessingBuilder takes ownership of the capture_analyzer.
|
|
AudioProcessingBuilder& SetCaptureAnalyzer(
|
|
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer) {
|
|
capture_analyzer_ = std::move(capture_analyzer);
|
|
return *this;
|
|
}
|
|
// This creates an APM instance using the previously set components. Calling
|
|
// the Create function resets the AudioProcessingBuilder to its initial state.
|
|
AudioProcessing* Create();
|
|
AudioProcessing* Create(const webrtc::Config& config);
|
|
|
|
private:
|
|
std::unique_ptr<EchoControlFactory> echo_control_factory_;
|
|
std::unique_ptr<CustomProcessing> capture_post_processing_;
|
|
std::unique_ptr<CustomProcessing> render_pre_processing_;
|
|
rtc::scoped_refptr<EchoDetector> echo_detector_;
|
|
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer_;
|
|
RTC_DISALLOW_COPY_AND_ASSIGN(AudioProcessingBuilder);
|
|
};
|
|
|
|
class StreamConfig {
|
|
public:
|
|
// sample_rate_hz: The sampling rate of the stream.
|
|
//
|
|
// num_channels: The number of audio channels in the stream, excluding the
|
|
// keyboard channel if it is present. When passing a
|
|
// StreamConfig with an array of arrays T*[N],
|
|
//
|
|
// N == {num_channels + 1 if has_keyboard
|
|
// {num_channels if !has_keyboard
|
|
//
|
|
// has_keyboard: True if the stream has a keyboard channel. When has_keyboard
|
|
// is true, the last channel in any corresponding list of
|
|
// channels is the keyboard channel.
|
|
StreamConfig(int sample_rate_hz = 0,
|
|
size_t num_channels = 0,
|
|
bool has_keyboard = false)
|
|
: sample_rate_hz_(sample_rate_hz),
|
|
num_channels_(num_channels),
|
|
has_keyboard_(has_keyboard),
|
|
num_frames_(calculate_frames(sample_rate_hz)) {}
|
|
|
|
void set_sample_rate_hz(int value) {
|
|
sample_rate_hz_ = value;
|
|
num_frames_ = calculate_frames(value);
|
|
}
|
|
void set_num_channels(size_t value) { num_channels_ = value; }
|
|
void set_has_keyboard(bool value) { has_keyboard_ = value; }
|
|
|
|
int sample_rate_hz() const { return sample_rate_hz_; }
|
|
|
|
// The number of channels in the stream, not including the keyboard channel if
|
|
// present.
|
|
size_t num_channels() const { return num_channels_; }
|
|
|
|
bool has_keyboard() const { return has_keyboard_; }
|
|
size_t num_frames() const { return num_frames_; }
|
|
size_t num_samples() const { return num_channels_ * num_frames_; }
|
|
|
|
bool operator==(const StreamConfig& other) const {
|
|
return sample_rate_hz_ == other.sample_rate_hz_ &&
|
|
num_channels_ == other.num_channels_ &&
|
|
has_keyboard_ == other.has_keyboard_;
|
|
}
|
|
|
|
bool operator!=(const StreamConfig& other) const { return !(*this == other); }
|
|
|
|
private:
|
|
static size_t calculate_frames(int sample_rate_hz) {
|
|
return static_cast<size_t>(AudioProcessing::kChunkSizeMs * sample_rate_hz /
|
|
1000);
|
|
}
|
|
|
|
int sample_rate_hz_;
|
|
size_t num_channels_;
|
|
bool has_keyboard_;
|
|
size_t num_frames_;
|
|
};
|
|
|
|
class ProcessingConfig {
|
|
public:
|
|
enum StreamName {
|
|
kInputStream,
|
|
kOutputStream,
|
|
kReverseInputStream,
|
|
kReverseOutputStream,
|
|
kNumStreamNames,
|
|
};
|
|
|
|
const StreamConfig& input_stream() const {
|
|
return streams[StreamName::kInputStream];
|
|
}
|
|
const StreamConfig& output_stream() const {
|
|
return streams[StreamName::kOutputStream];
|
|
}
|
|
const StreamConfig& reverse_input_stream() const {
|
|
return streams[StreamName::kReverseInputStream];
|
|
}
|
|
const StreamConfig& reverse_output_stream() const {
|
|
return streams[StreamName::kReverseOutputStream];
|
|
}
|
|
|
|
StreamConfig& input_stream() { return streams[StreamName::kInputStream]; }
|
|
StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; }
|
|
StreamConfig& reverse_input_stream() {
|
|
return streams[StreamName::kReverseInputStream];
|
|
}
|
|
StreamConfig& reverse_output_stream() {
|
|
return streams[StreamName::kReverseOutputStream];
|
|
}
|
|
|
|
bool operator==(const ProcessingConfig& other) const {
|
|
for (int i = 0; i < StreamName::kNumStreamNames; ++i) {
|
|
if (this->streams[i] != other.streams[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const ProcessingConfig& other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
StreamConfig streams[StreamName::kNumStreamNames];
|
|
};
|
|
|
|
// Experimental interface for a custom analysis submodule.
|
|
class CustomAudioAnalyzer {
|
|
public:
|
|
// (Re-) Initializes the submodule.
|
|
virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
|
|
// Analyzes the given capture or render signal.
|
|
virtual void Analyze(const AudioBuffer* audio) = 0;
|
|
// Returns a string representation of the module state.
|
|
virtual std::string ToString() const = 0;
|
|
|
|
virtual ~CustomAudioAnalyzer() {}
|
|
};
|
|
|
|
// Interface for a custom processing submodule.
|
|
class CustomProcessing {
|
|
public:
|
|
// (Re-)Initializes the submodule.
|
|
virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
|
|
// Processes the given capture or render signal.
|
|
virtual void Process(AudioBuffer* audio) = 0;
|
|
// Returns a string representation of the module state.
|
|
virtual std::string ToString() const = 0;
|
|
// Handles RuntimeSettings. TODO(webrtc:9262): make pure virtual
|
|
// after updating dependencies.
|
|
virtual void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting);
|
|
|
|
virtual ~CustomProcessing() {}
|
|
};
|
|
|
|
// Interface for an echo detector submodule.
|
|
class EchoDetector : public rtc::RefCountInterface {
|
|
public:
|
|
// (Re-)Initializes the submodule.
|
|
virtual void Initialize(int capture_sample_rate_hz,
|
|
int num_capture_channels,
|
|
int render_sample_rate_hz,
|
|
int num_render_channels) = 0;
|
|
|
|
// Analysis (not changing) of the render signal.
|
|
virtual void AnalyzeRenderAudio(rtc::ArrayView<const float> render_audio) = 0;
|
|
|
|
// Analysis (not changing) of the capture signal.
|
|
virtual void AnalyzeCaptureAudio(
|
|
rtc::ArrayView<const float> capture_audio) = 0;
|
|
|
|
// Pack an AudioBuffer into a vector<float>.
|
|
static void PackRenderAudioBuffer(AudioBuffer* audio,
|
|
std::vector<float>* packed_buffer);
|
|
|
|
struct Metrics {
|
|
absl::optional<double> echo_likelihood;
|
|
absl::optional<double> echo_likelihood_recent_max;
|
|
};
|
|
|
|
// Collect current metrics from the echo detector.
|
|
virtual Metrics GetMetrics() const = 0;
|
|
};
|
|
|
|
} // namespace webrtc
|
|
|
|
#endif // MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
|