Nagram/TMessagesProj/jni/voip/webrtc/absl/synchronization/mutex_benchmark.cc
2020-09-30 16:48:47 +03:00

224 lines
6.4 KiB
C++

// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <mutex> // NOLINT(build/c++11)
#include <vector>
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/spinlock.h"
#include "absl/synchronization/blocking_counter.h"
#include "absl/synchronization/internal/thread_pool.h"
#include "absl/synchronization/mutex.h"
#include "benchmark/benchmark.h"
namespace {
void BM_Mutex(benchmark::State& state) {
static absl::Mutex* mu = new absl::Mutex;
for (auto _ : state) {
absl::MutexLock lock(mu);
}
}
BENCHMARK(BM_Mutex)->UseRealTime()->Threads(1)->ThreadPerCpu();
static void DelayNs(int64_t ns, int* data) {
int64_t end = absl::base_internal::CycleClock::Now() +
ns * absl::base_internal::CycleClock::Frequency() / 1e9;
while (absl::base_internal::CycleClock::Now() < end) {
++(*data);
benchmark::DoNotOptimize(*data);
}
}
template <typename MutexType>
class RaiiLocker {
public:
explicit RaiiLocker(MutexType* mu) : mu_(mu) { mu_->Lock(); }
~RaiiLocker() { mu_->Unlock(); }
private:
MutexType* mu_;
};
template <>
class RaiiLocker<std::mutex> {
public:
explicit RaiiLocker(std::mutex* mu) : mu_(mu) { mu_->lock(); }
~RaiiLocker() { mu_->unlock(); }
private:
std::mutex* mu_;
};
template <typename MutexType>
void BM_Contended(benchmark::State& state) {
struct Shared {
MutexType mu;
int data = 0;
};
static auto* shared = new Shared;
int local = 0;
for (auto _ : state) {
// Here we model both local work outside of the critical section as well as
// some work inside of the critical section. The idea is to capture some
// more or less realisitic contention levels.
// If contention is too low, the benchmark won't measure anything useful.
// If contention is unrealistically high, the benchmark will favor
// bad mutex implementations that block and otherwise distract threads
// from the mutex and shared state for as much as possible.
// To achieve this amount of local work is multiplied by number of threads
// to keep ratio between local work and critical section approximately
// equal regardless of number of threads.
DelayNs(100 * state.threads, &local);
RaiiLocker<MutexType> locker(&shared->mu);
DelayNs(state.range(0), &shared->data);
}
}
BENCHMARK_TEMPLATE(BM_Contended, absl::Mutex)
->UseRealTime()
// ThreadPerCpu poorly handles non-power-of-two CPU counts.
->Threads(1)
->Threads(2)
->Threads(4)
->Threads(6)
->Threads(8)
->Threads(12)
->Threads(16)
->Threads(24)
->Threads(32)
->Threads(48)
->Threads(64)
->Threads(96)
->Threads(128)
->Threads(192)
->Threads(256)
// Some empirically chosen amounts of work in critical section.
// 1 is low contention, 200 is high contention and few values in between.
->Arg(1)
->Arg(20)
->Arg(50)
->Arg(200);
BENCHMARK_TEMPLATE(BM_Contended, absl::base_internal::SpinLock)
->UseRealTime()
// ThreadPerCpu poorly handles non-power-of-two CPU counts.
->Threads(1)
->Threads(2)
->Threads(4)
->Threads(6)
->Threads(8)
->Threads(12)
->Threads(16)
->Threads(24)
->Threads(32)
->Threads(48)
->Threads(64)
->Threads(96)
->Threads(128)
->Threads(192)
->Threads(256)
// Some empirically chosen amounts of work in critical section.
// 1 is low contention, 200 is high contention and few values in between.
->Arg(1)
->Arg(20)
->Arg(50)
->Arg(200);
BENCHMARK_TEMPLATE(BM_Contended, std::mutex)
->UseRealTime()
// ThreadPerCpu poorly handles non-power-of-two CPU counts.
->Threads(1)
->Threads(2)
->Threads(4)
->Threads(6)
->Threads(8)
->Threads(12)
->Threads(16)
->Threads(24)
->Threads(32)
->Threads(48)
->Threads(64)
->Threads(96)
->Threads(128)
->Threads(192)
->Threads(256)
// Some empirically chosen amounts of work in critical section.
// 1 is low contention, 200 is high contention and few values in between.
->Arg(1)
->Arg(20)
->Arg(50)
->Arg(200);
// Measure the overhead of conditions on mutex release (when they must be
// evaluated). Mutex has (some) support for equivalence classes allowing
// Conditions with the same function/argument to potentially not be multiply
// evaluated.
//
// num_classes==0 is used for the special case of every waiter being distinct.
void BM_ConditionWaiters(benchmark::State& state) {
int num_classes = state.range(0);
int num_waiters = state.range(1);
struct Helper {
static void Waiter(absl::BlockingCounter* init, absl::Mutex* m, int* p) {
init->DecrementCount();
m->LockWhen(absl::Condition(
static_cast<bool (*)(int*)>([](int* v) { return *v == 0; }), p));
m->Unlock();
}
};
if (num_classes == 0) {
// No equivalence classes.
num_classes = num_waiters;
}
absl::BlockingCounter init(num_waiters);
absl::Mutex mu;
std::vector<int> equivalence_classes(num_classes, 1);
// Must be declared last to be destroyed first.
absl::synchronization_internal::ThreadPool pool(num_waiters);
for (int i = 0; i < num_waiters; i++) {
// Mutex considers Conditions with the same function and argument
// to be equivalent.
pool.Schedule([&, i] {
Helper::Waiter(&init, &mu, &equivalence_classes[i % num_classes]);
});
}
init.Wait();
for (auto _ : state) {
mu.Lock();
mu.Unlock(); // Each unlock requires Condition evaluation for our waiters.
}
mu.Lock();
for (int i = 0; i < num_classes; i++) {
equivalence_classes[i] = 0;
}
mu.Unlock();
}
// Some configurations have higher thread limits than others.
#if defined(__linux__) && !defined(THREAD_SANITIZER)
constexpr int kMaxConditionWaiters = 8192;
#else
constexpr int kMaxConditionWaiters = 1024;
#endif
BENCHMARK(BM_ConditionWaiters)->RangePair(0, 2, 1, kMaxConditionWaiters);
} // namespace