Nagram/TMessagesProj/jni/voip/webrtc/base/process/process_metrics_mac.cc
2020-09-30 16:48:47 +03:00

346 lines
12 KiB
C++

// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/process_metrics.h"
#include <libproc.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <mach/mach_vm.h>
#include <mach/shared_region.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/sysctl.h>
#include "base/logging.h"
#include "base/mac/mac_util.h"
#include "base/mac/mach_logging.h"
#include "base/mac/scoped_mach_port.h"
#include "base/memory/ptr_util.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math.h"
#include "base/process/process_metrics_iocounters.h"
#include "base/time/time.h"
namespace {
// This is a standin for the private pm_task_energy_data_t struct.
struct OpaquePMTaskEnergyData {
// Empirical size of the private struct.
uint8_t data[384];
};
// Sample everything but network usage, since fetching network
// usage can hang.
static constexpr uint8_t kPMSampleFlags = 0xff & ~0x8;
} // namespace
extern "C" {
// From libpmsample.dylib
int pm_sample_task(mach_port_t task,
OpaquePMTaskEnergyData* pm_energy,
uint64_t mach_time,
uint8_t flags);
// From libpmenergy.dylib
double pm_energy_impact(OpaquePMTaskEnergyData* pm_energy);
} // extern "C"
namespace base {
namespace {
bool GetTaskInfo(mach_port_t task, task_basic_info_64* task_info_data) {
if (task == MACH_PORT_NULL)
return false;
mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT;
kern_return_t kr = task_info(task,
TASK_BASIC_INFO_64,
reinterpret_cast<task_info_t>(task_info_data),
&count);
// Most likely cause for failure: |task| is a zombie.
return kr == KERN_SUCCESS;
}
MachVMRegionResult ParseOutputFromMachVMRegion(kern_return_t kr) {
if (kr == KERN_INVALID_ADDRESS) {
// We're at the end of the address space.
return MachVMRegionResult::Finished;
} else if (kr != KERN_SUCCESS) {
return MachVMRegionResult::Error;
}
return MachVMRegionResult::Success;
}
bool GetPowerInfo(mach_port_t task, task_power_info* power_info_data) {
if (task == MACH_PORT_NULL)
return false;
mach_msg_type_number_t power_info_count = TASK_POWER_INFO_COUNT;
kern_return_t kr = task_info(task, TASK_POWER_INFO,
reinterpret_cast<task_info_t>(power_info_data),
&power_info_count);
// Most likely cause for failure: |task| is a zombie.
return kr == KERN_SUCCESS;
}
double GetEnergyImpactInternal(mach_port_t task, uint64_t mach_time) {
OpaquePMTaskEnergyData energy_info{};
if (pm_sample_task(task, &energy_info, mach_time, kPMSampleFlags) != 0)
return 0.0;
return pm_energy_impact(&energy_info);
}
} // namespace
// Getting a mach task from a pid for another process requires permissions in
// general, so there doesn't really seem to be a way to do these (and spinning
// up ps to fetch each stats seems dangerous to put in a base api for anyone to
// call). Child processes ipc their port, so return something if available,
// otherwise return 0.
// static
std::unique_ptr<ProcessMetrics> ProcessMetrics::CreateProcessMetrics(
ProcessHandle process,
PortProvider* port_provider) {
return WrapUnique(new ProcessMetrics(process, port_provider));
}
#define TIME_VALUE_TO_TIMEVAL(a, r) do { \
(r)->tv_sec = (a)->seconds; \
(r)->tv_usec = (a)->microseconds; \
} while (0)
TimeDelta ProcessMetrics::GetCumulativeCPUUsage() {
mach_port_t task = TaskForPid(process_);
if (task == MACH_PORT_NULL)
return TimeDelta();
// Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage()
// in libtop.c), but this is more concise and gives the same results:
task_thread_times_info thread_info_data;
mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT;
kern_return_t kr = task_info(task,
TASK_THREAD_TIMES_INFO,
reinterpret_cast<task_info_t>(&thread_info_data),
&thread_info_count);
if (kr != KERN_SUCCESS) {
// Most likely cause: |task| is a zombie.
return TimeDelta();
}
task_basic_info_64 task_info_data;
if (!GetTaskInfo(task, &task_info_data))
return TimeDelta();
/* Set total_time. */
// thread info contains live time...
struct timeval user_timeval, system_timeval, task_timeval;
TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval);
TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval);
timeradd(&user_timeval, &system_timeval, &task_timeval);
// ... task info contains terminated time.
TIME_VALUE_TO_TIMEVAL(&task_info_data.user_time, &user_timeval);
TIME_VALUE_TO_TIMEVAL(&task_info_data.system_time, &system_timeval);
timeradd(&user_timeval, &task_timeval, &task_timeval);
timeradd(&system_timeval, &task_timeval, &task_timeval);
return TimeDelta::FromMicroseconds(TimeValToMicroseconds(task_timeval));
}
int ProcessMetrics::GetPackageIdleWakeupsPerSecond() {
mach_port_t task = TaskForPid(process_);
task_power_info power_info_data;
GetPowerInfo(task, &power_info_data);
// The task_power_info struct contains two wakeup counters:
// task_interrupt_wakeups and task_platform_idle_wakeups.
// task_interrupt_wakeups is the total number of wakeups generated by the
// process, and is the number that Activity Monitor reports.
// task_platform_idle_wakeups is a subset of task_interrupt_wakeups that
// tallies the number of times the processor was taken out of its low-power
// idle state to handle a wakeup. task_platform_idle_wakeups therefore result
// in a greater power increase than the other interrupts which occur while the
// CPU is already working, and reducing them has a greater overall impact on
// power usage. See the powermetrics man page for more info.
return CalculatePackageIdleWakeupsPerSecond(
power_info_data.task_platform_idle_wakeups);
}
int ProcessMetrics::GetIdleWakeupsPerSecond() {
mach_port_t task = TaskForPid(process_);
task_power_info power_info_data;
GetPowerInfo(task, &power_info_data);
return CalculateIdleWakeupsPerSecond(power_info_data.task_interrupt_wakeups);
}
int ProcessMetrics::GetEnergyImpact() {
uint64_t now = mach_absolute_time();
if (last_energy_impact_ == 0) {
last_energy_impact_ = GetEnergyImpactInternal(TaskForPid(process_), now);
last_energy_impact_time_ = now;
return 0;
}
double total_energy_impact =
GetEnergyImpactInternal(TaskForPid(process_), now);
uint64_t delta = now - last_energy_impact_time_;
if (delta == 0)
return 0;
// Scale by 100 since the histogram is integral.
double seconds_since_last_measurement =
base::TimeTicks::FromMachAbsoluteTime(delta).since_origin().InSecondsF();
int energy_impact = 100 * (total_energy_impact - last_energy_impact_) /
seconds_since_last_measurement;
last_energy_impact_ = total_energy_impact;
last_energy_impact_time_ = now;
return energy_impact;
}
int ProcessMetrics::GetOpenFdCount() const {
// In order to get a true count of the open number of FDs, PROC_PIDLISTFDS
// is used. This is done twice: first to get the appropriate size of a
// buffer, and then secondly to fill the buffer with the actual FD info.
//
// The buffer size returned in the first call is an estimate, based on the
// number of allocated fileproc structures in the kernel. This number can be
// greater than the actual number of open files, since the structures are
// allocated in slabs. The value returned in proc_bsdinfo::pbi_nfiles is
// also the number of allocated fileprocs, not the number in use.
//
// However, the buffer size returned in the second call is an accurate count
// of the open number of descriptors. The contents of the buffer are unused.
int rv = proc_pidinfo(process_, PROC_PIDLISTFDS, 0, nullptr, 0);
if (rv < 0)
return -1;
std::unique_ptr<char[]> buffer(new char[rv]);
rv = proc_pidinfo(process_, PROC_PIDLISTFDS, 0, buffer.get(), rv);
if (rv < 0)
return -1;
return rv / PROC_PIDLISTFD_SIZE;
}
int ProcessMetrics::GetOpenFdSoftLimit() const {
return GetMaxFds();
}
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
return false;
}
ProcessMetrics::ProcessMetrics(ProcessHandle process,
PortProvider* port_provider)
: process_(process),
last_absolute_idle_wakeups_(0),
last_absolute_package_idle_wakeups_(0),
last_energy_impact_(0),
port_provider_(port_provider) {}
mach_port_t ProcessMetrics::TaskForPid(ProcessHandle process) const {
mach_port_t task = MACH_PORT_NULL;
if (port_provider_)
task = port_provider_->TaskForPid(process_);
if (task == MACH_PORT_NULL && process_ == getpid())
task = mach_task_self();
return task;
}
// Bytes committed by the system.
size_t GetSystemCommitCharge() {
base::mac::ScopedMachSendRight host(mach_host_self());
mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
vm_statistics_data_t data;
kern_return_t kr = host_statistics(host.get(), HOST_VM_INFO,
reinterpret_cast<host_info_t>(&data),
&count);
if (kr != KERN_SUCCESS) {
MACH_DLOG(WARNING, kr) << "host_statistics";
return 0;
}
return (data.active_count * PAGE_SIZE) / 1024;
}
bool GetSystemMemoryInfo(SystemMemoryInfoKB* meminfo) {
struct host_basic_info hostinfo;
mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
base::mac::ScopedMachSendRight host(mach_host_self());
int result = host_info(host.get(), HOST_BASIC_INFO,
reinterpret_cast<host_info_t>(&hostinfo), &count);
if (result != KERN_SUCCESS)
return false;
DCHECK_EQ(HOST_BASIC_INFO_COUNT, count);
meminfo->total = static_cast<int>(hostinfo.max_mem / 1024);
vm_statistics64_data_t vm_info;
count = HOST_VM_INFO64_COUNT;
if (host_statistics64(host.get(), HOST_VM_INFO64,
reinterpret_cast<host_info64_t>(&vm_info),
&count) != KERN_SUCCESS) {
return false;
}
DCHECK_EQ(HOST_VM_INFO64_COUNT, count);
static_assert(PAGE_SIZE % 1024 == 0, "Invalid page size");
meminfo->free = saturated_cast<int>(
PAGE_SIZE / 1024 * (vm_info.free_count - vm_info.speculative_count));
meminfo->speculative =
saturated_cast<int>(PAGE_SIZE / 1024 * vm_info.speculative_count);
meminfo->file_backed =
saturated_cast<int>(PAGE_SIZE / 1024 * vm_info.external_page_count);
meminfo->purgeable =
saturated_cast<int>(PAGE_SIZE / 1024 * vm_info.purgeable_count);
return true;
}
// Both |size| and |address| are in-out parameters.
// |info| is an output parameter, only valid on Success.
MachVMRegionResult GetTopInfo(mach_port_t task,
mach_vm_size_t* size,
mach_vm_address_t* address,
vm_region_top_info_data_t* info) {
mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT;
mach_port_t object_name;
kern_return_t kr = mach_vm_region(task, address, size, VM_REGION_TOP_INFO,
reinterpret_cast<vm_region_info_t>(info),
&info_count, &object_name);
// The kernel always returns a null object for VM_REGION_TOP_INFO, but
// balance it with a deallocate in case this ever changes. See 10.9.2
// xnu-2422.90.20/osfmk/vm/vm_map.c vm_map_region.
mach_port_deallocate(task, object_name);
return ParseOutputFromMachVMRegion(kr);
}
MachVMRegionResult GetBasicInfo(mach_port_t task,
mach_vm_size_t* size,
mach_vm_address_t* address,
vm_region_basic_info_64* info) {
mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
mach_port_t object_name;
kern_return_t kr = mach_vm_region(
task, address, size, VM_REGION_BASIC_INFO_64,
reinterpret_cast<vm_region_info_t>(info), &info_count, &object_name);
// The kernel always returns a null object for VM_REGION_BASIC_INFO_64, but
// balance it with a deallocate in case this ever changes. See 10.9.2
// xnu-2422.90.20/osfmk/vm/vm_map.c vm_map_region.
mach_port_deallocate(task, object_name);
return ParseOutputFromMachVMRegion(kr);
}
} // namespace base