Nagram/TMessagesProj/jni/voip/webrtc/base/threading/thread_perftest.cc
2020-09-30 16:48:47 +03:00

350 lines
11 KiB
C++

// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <memory>
#include <vector>
#include "base/base_switches.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/location.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_loop_current.h"
#include "base/single_thread_task_runner.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/task/task_observer.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_result_reporter.h"
#if defined(OS_POSIX)
#include <pthread.h>
#endif
namespace base {
namespace {
const int kNumRuns = 100000;
constexpr char kMetricPrefixThread[] = "Thread.";
constexpr char kMetricClockTimePerHop[] = "wall_time_per_hop";
constexpr char kMetricCpuTimePerHop[] = "cpu_time_per_hop";
constexpr char kStoryBaseTask[] = "task";
constexpr char kStoryBaseTaskWithObserver[] = "task_with_observer";
constexpr char kStoryBaseWaitableEvent[] = "waitable_event";
constexpr char kStoryBaseCondVar[] = "condition_variable";
constexpr char kStorySuffixOneThread[] = "_1_thread";
constexpr char kStorySuffixFourThreads[] = "_4_threads";
#if defined(OS_POSIX)
constexpr char kStoryBasePthreadCondVar[] = "pthread_condition_variable";
#endif // defined(OS_POSIX)
perf_test::PerfResultReporter SetUpReporter(const std::string& story_name) {
perf_test::PerfResultReporter reporter(kMetricPrefixThread, story_name);
reporter.RegisterImportantMetric(kMetricClockTimePerHop, "us");
reporter.RegisterImportantMetric(kMetricCpuTimePerHop, "us");
return reporter;
}
// Base class for a threading perf-test. This sets up some threads for the
// test and measures the clock-time in addition to time spent on each thread.
class ThreadPerfTest : public testing::Test {
public:
ThreadPerfTest()
: done_(WaitableEvent::ResetPolicy::AUTOMATIC,
WaitableEvent::InitialState::NOT_SIGNALED) {}
// To be implemented by each test. Subclass must uses threads_ such that
// their cpu-time can be measured. Test must return from PingPong() _and_
// call FinishMeasurement from any thread to complete the test.
virtual void Init() {
if (ThreadTicks::IsSupported())
ThreadTicks::WaitUntilInitialized();
}
virtual void PingPong(int hops) = 0;
virtual void Reset() {}
void TimeOnThread(base::ThreadTicks* ticks, base::WaitableEvent* done) {
*ticks = base::ThreadTicks::Now();
done->Signal();
}
base::ThreadTicks ThreadNow(const base::Thread& thread) {
base::WaitableEvent done(WaitableEvent::ResetPolicy::AUTOMATIC,
WaitableEvent::InitialState::NOT_SIGNALED);
base::ThreadTicks ticks;
thread.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&ThreadPerfTest::TimeOnThread,
base::Unretained(this), &ticks, &done));
done.Wait();
return ticks;
}
void RunPingPongTest(const std::string& story_name, unsigned num_threads) {
// Create threads and collect starting cpu-time for each thread.
std::vector<base::ThreadTicks> thread_starts;
while (threads_.size() < num_threads) {
threads_.push_back(std::make_unique<base::Thread>("PingPonger"));
threads_.back()->Start();
if (base::ThreadTicks::IsSupported())
thread_starts.push_back(ThreadNow(*threads_.back()));
}
Init();
base::TimeTicks start = base::TimeTicks::Now();
PingPong(kNumRuns);
done_.Wait();
base::TimeTicks end = base::TimeTicks::Now();
// Gather the cpu-time spent on each thread. This does one extra tasks,
// but that should be in the noise given enough runs.
base::TimeDelta thread_time;
while (threads_.size()) {
if (base::ThreadTicks::IsSupported()) {
thread_time += ThreadNow(*threads_.back()) - thread_starts.back();
thread_starts.pop_back();
}
threads_.pop_back();
}
Reset();
double num_runs = static_cast<double>(kNumRuns);
double us_per_task_clock = (end - start).InMicroseconds() / num_runs;
double us_per_task_cpu = thread_time.InMicroseconds() / num_runs;
auto reporter = SetUpReporter(story_name);
// Clock time per task.
reporter.AddResult(kMetricClockTimePerHop, us_per_task_clock);
// Total utilization across threads if available (likely higher).
if (base::ThreadTicks::IsSupported()) {
reporter.AddResult(kMetricCpuTimePerHop, us_per_task_cpu);
}
}
protected:
void FinishMeasurement() { done_.Signal(); }
std::vector<std::unique_ptr<base::Thread>> threads_;
private:
base::WaitableEvent done_;
};
// Class to test task performance by posting empty tasks back and forth.
class TaskPerfTest : public ThreadPerfTest {
base::Thread* NextThread(int count) {
return threads_[count % threads_.size()].get();
}
void PingPong(int hops) override {
if (!hops) {
FinishMeasurement();
return;
}
NextThread(hops)->task_runner()->PostTask(
FROM_HERE, base::BindOnce(&ThreadPerfTest::PingPong,
base::Unretained(this), hops - 1));
}
};
// This tries to test the 'best-case' as well as the 'worst-case' task posting
// performance. The best-case keeps one thread alive such that it never yeilds,
// while the worse-case forces a context switch for every task. Four threads are
// used to ensure the threads do yeild (with just two it might be possible for
// both threads to stay awake if they can signal each other fast enough).
TEST_F(TaskPerfTest, TaskPingPong) {
RunPingPongTest(std::string(kStoryBaseTask) + kStorySuffixOneThread, 1);
RunPingPongTest(std::string(kStoryBaseTask) + kStorySuffixFourThreads, 4);
}
// Same as above, but add observers to test their perf impact.
class MessageLoopObserver : public base::TaskObserver {
public:
void WillProcessTask(const base::PendingTask& pending_task,
bool was_blocked_or_low_priority) override {}
void DidProcessTask(const base::PendingTask& pending_task) override {}
};
MessageLoopObserver message_loop_observer;
class TaskObserverPerfTest : public TaskPerfTest {
public:
void Init() override {
TaskPerfTest::Init();
for (auto& i : threads_) {
i->task_runner()->PostTask(
FROM_HERE, BindOnce(
[](MessageLoopObserver* observer) {
MessageLoopCurrent::Get()->AddTaskObserver(observer);
},
Unretained(&message_loop_observer)));
}
}
};
TEST_F(TaskObserverPerfTest, TaskPingPong) {
RunPingPongTest(
std::string(kStoryBaseTaskWithObserver) + kStorySuffixOneThread, 1);
RunPingPongTest(
std::string(kStoryBaseTaskWithObserver) + kStorySuffixFourThreads, 4);
}
// Class to test our WaitableEvent performance by signaling back and fort.
// WaitableEvent is templated so we can also compare with other versions.
template <typename WaitableEventType>
class EventPerfTest : public ThreadPerfTest {
public:
void Init() override {
for (size_t i = 0; i < threads_.size(); i++) {
events_.push_back(std::make_unique<WaitableEventType>(
WaitableEvent::ResetPolicy::AUTOMATIC,
WaitableEvent::InitialState::NOT_SIGNALED));
}
}
void Reset() override { events_.clear(); }
void WaitAndSignalOnThread(size_t event) {
size_t next_event = (event + 1) % events_.size();
int my_hops = 0;
do {
events_[event]->Wait();
my_hops = --remaining_hops_; // We own 'hops' between Wait and Signal.
events_[next_event]->Signal();
} while (my_hops > 0);
// Once we are done, all threads will signal as hops passes zero.
// We only signal completion once, on the thread that reaches zero.
if (!my_hops)
FinishMeasurement();
}
void PingPong(int hops) override {
remaining_hops_ = hops;
for (size_t i = 0; i < threads_.size(); i++) {
threads_[i]->task_runner()->PostTask(
FROM_HERE, base::BindOnce(&EventPerfTest::WaitAndSignalOnThread,
base::Unretained(this), i));
}
// Kick off the Signal ping-ponging.
events_.front()->Signal();
}
int remaining_hops_;
std::vector<std::unique_ptr<WaitableEventType>> events_;
};
// Similar to the task posting test, this just tests similar functionality
// using WaitableEvents. We only test four threads (worst-case), but we
// might want to craft a way to test the best-case (where the thread doesn't
// end up blocking because the event is already signalled).
typedef EventPerfTest<base::WaitableEvent> WaitableEventThreadPerfTest;
TEST_F(WaitableEventThreadPerfTest, EventPingPong) {
RunPingPongTest(
std::string(kStoryBaseWaitableEvent) + kStorySuffixFourThreads, 4);
}
// Build a minimal event using ConditionVariable.
class ConditionVariableEvent {
public:
ConditionVariableEvent(WaitableEvent::ResetPolicy reset_policy,
WaitableEvent::InitialState initial_state)
: cond_(&lock_), signaled_(false) {
DCHECK_EQ(WaitableEvent::ResetPolicy::AUTOMATIC, reset_policy);
DCHECK_EQ(WaitableEvent::InitialState::NOT_SIGNALED, initial_state);
}
void Signal() {
{
base::AutoLock scoped_lock(lock_);
signaled_ = true;
}
cond_.Signal();
}
void Wait() {
base::AutoLock scoped_lock(lock_);
while (!signaled_)
cond_.Wait();
signaled_ = false;
}
private:
base::Lock lock_;
base::ConditionVariable cond_;
bool signaled_;
};
// This is meant to test the absolute minimal context switching time
// using our own base synchronization code.
typedef EventPerfTest<ConditionVariableEvent> ConditionVariablePerfTest;
TEST_F(ConditionVariablePerfTest, EventPingPong) {
RunPingPongTest(std::string(kStoryBaseCondVar) + kStorySuffixFourThreads, 4);
}
#if defined(OS_POSIX)
// Absolutely 100% minimal posix waitable event. If there is a better/faster
// way to force a context switch, we should use that instead.
class PthreadEvent {
public:
PthreadEvent(WaitableEvent::ResetPolicy reset_policy,
WaitableEvent::InitialState initial_state) {
DCHECK_EQ(WaitableEvent::ResetPolicy::AUTOMATIC, reset_policy);
DCHECK_EQ(WaitableEvent::InitialState::NOT_SIGNALED, initial_state);
pthread_mutex_init(&mutex_, nullptr);
pthread_cond_init(&cond_, nullptr);
signaled_ = false;
}
~PthreadEvent() {
pthread_cond_destroy(&cond_);
pthread_mutex_destroy(&mutex_);
}
void Signal() {
pthread_mutex_lock(&mutex_);
signaled_ = true;
pthread_mutex_unlock(&mutex_);
pthread_cond_signal(&cond_);
}
void Wait() {
pthread_mutex_lock(&mutex_);
while (!signaled_)
pthread_cond_wait(&cond_, &mutex_);
signaled_ = false;
pthread_mutex_unlock(&mutex_);
}
private:
bool signaled_;
pthread_mutex_t mutex_;
pthread_cond_t cond_;
};
// This is meant to test the absolute minimal context switching time.
// If there is any faster way to do this we should substitute it in.
typedef EventPerfTest<PthreadEvent> PthreadEventPerfTest;
TEST_F(PthreadEventPerfTest, EventPingPong) {
RunPingPongTest(
std::string(kStoryBasePthreadCondVar) + kStorySuffixFourThreads, 4);
}
#endif
} // namespace
} // namespace base