1734 lines
49 KiB
C++
1734 lines
49 KiB
C++
/*
|
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
#include "rtc_base/physical_socket_server.h"
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER < 1300
|
|
#pragma warning(disable : 4786)
|
|
#endif
|
|
|
|
#ifdef MEMORY_SANITIZER
|
|
#include <sanitizer/msan_interface.h>
|
|
#endif
|
|
|
|
#if defined(WEBRTC_POSIX)
|
|
#include <fcntl.h>
|
|
#include <string.h>
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
// "poll" will be used to wait for the signal dispatcher.
|
|
#include <poll.h>
|
|
#endif
|
|
#include <sys/ioctl.h>
|
|
#include <sys/select.h>
|
|
#include <sys/time.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
#include <windows.h>
|
|
#include <winsock2.h>
|
|
#include <ws2tcpip.h>
|
|
#undef SetPort
|
|
#endif
|
|
|
|
#include <errno.h>
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
|
|
#include "rtc_base/arraysize.h"
|
|
#include "rtc_base/byte_order.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/network_monitor.h"
|
|
#include "rtc_base/null_socket_server.h"
|
|
#include "rtc_base/time_utils.h"
|
|
|
|
#if defined(WEBRTC_LINUX)
|
|
#include <linux/sockios.h>
|
|
#endif
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
#define LAST_SYSTEM_ERROR (::GetLastError())
|
|
#elif defined(__native_client__) && __native_client__
|
|
#define LAST_SYSTEM_ERROR (0)
|
|
#elif defined(WEBRTC_POSIX)
|
|
#define LAST_SYSTEM_ERROR (errno)
|
|
#endif // WEBRTC_WIN
|
|
|
|
#if defined(WEBRTC_POSIX)
|
|
#include <netinet/tcp.h> // for TCP_NODELAY
|
|
#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
|
|
typedef void* SockOptArg;
|
|
|
|
#endif // WEBRTC_POSIX
|
|
|
|
#if defined(WEBRTC_POSIX) && !defined(WEBRTC_MAC) && !defined(__native_client__)
|
|
|
|
int64_t GetSocketRecvTimestamp(int socket) {
|
|
struct timeval tv_ioctl;
|
|
int ret = ioctl(socket, SIOCGSTAMP, &tv_ioctl);
|
|
if (ret != 0)
|
|
return -1;
|
|
int64_t timestamp =
|
|
rtc::kNumMicrosecsPerSec * static_cast<int64_t>(tv_ioctl.tv_sec) +
|
|
static_cast<int64_t>(tv_ioctl.tv_usec);
|
|
return timestamp;
|
|
}
|
|
|
|
#else
|
|
|
|
int64_t GetSocketRecvTimestamp(int socket) {
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
typedef char* SockOptArg;
|
|
#endif
|
|
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
// POLLRDHUP / EPOLLRDHUP are only defined starting with Linux 2.6.17.
|
|
#if !defined(POLLRDHUP)
|
|
#define POLLRDHUP 0x2000
|
|
#endif
|
|
#if !defined(EPOLLRDHUP)
|
|
#define EPOLLRDHUP 0x2000
|
|
#endif
|
|
#endif
|
|
|
|
namespace {
|
|
class ScopedSetTrue {
|
|
public:
|
|
ScopedSetTrue(bool* value) : value_(value) {
|
|
RTC_DCHECK(!*value_);
|
|
*value_ = true;
|
|
}
|
|
~ScopedSetTrue() { *value_ = false; }
|
|
|
|
private:
|
|
bool* value_;
|
|
};
|
|
} // namespace
|
|
|
|
namespace rtc {
|
|
|
|
std::unique_ptr<SocketServer> SocketServer::CreateDefault() {
|
|
#if defined(__native_client__)
|
|
return std::unique_ptr<SocketServer>(new rtc::NullSocketServer);
|
|
#else
|
|
return std::unique_ptr<SocketServer>(new rtc::PhysicalSocketServer);
|
|
#endif
|
|
}
|
|
|
|
PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s)
|
|
: ss_(ss),
|
|
s_(s),
|
|
error_(0),
|
|
state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
|
|
resolver_(nullptr) {
|
|
if (s_ != INVALID_SOCKET) {
|
|
SetEnabledEvents(DE_READ | DE_WRITE);
|
|
|
|
int type = SOCK_STREAM;
|
|
socklen_t len = sizeof(type);
|
|
const int res =
|
|
getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len);
|
|
RTC_DCHECK_EQ(0, res);
|
|
udp_ = (SOCK_DGRAM == type);
|
|
}
|
|
}
|
|
|
|
PhysicalSocket::~PhysicalSocket() {
|
|
Close();
|
|
}
|
|
|
|
bool PhysicalSocket::Create(int family, int type) {
|
|
Close();
|
|
s_ = ::socket(family, type, 0);
|
|
udp_ = (SOCK_DGRAM == type);
|
|
family_ = family;
|
|
UpdateLastError();
|
|
if (udp_) {
|
|
SetEnabledEvents(DE_READ | DE_WRITE);
|
|
}
|
|
return s_ != INVALID_SOCKET;
|
|
}
|
|
|
|
SocketAddress PhysicalSocket::GetLocalAddress() const {
|
|
sockaddr_storage addr_storage = {};
|
|
socklen_t addrlen = sizeof(addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int result = ::getsockname(s_, addr, &addrlen);
|
|
SocketAddress address;
|
|
if (result >= 0) {
|
|
SocketAddressFromSockAddrStorage(addr_storage, &address);
|
|
} else {
|
|
RTC_LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
|
|
<< s_;
|
|
}
|
|
return address;
|
|
}
|
|
|
|
SocketAddress PhysicalSocket::GetRemoteAddress() const {
|
|
sockaddr_storage addr_storage = {};
|
|
socklen_t addrlen = sizeof(addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int result = ::getpeername(s_, addr, &addrlen);
|
|
SocketAddress address;
|
|
if (result >= 0) {
|
|
SocketAddressFromSockAddrStorage(addr_storage, &address);
|
|
} else {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "GetRemoteAddress: unable to get remote addr, socket=" << s_;
|
|
}
|
|
return address;
|
|
}
|
|
|
|
int PhysicalSocket::Bind(const SocketAddress& bind_addr) {
|
|
SocketAddress copied_bind_addr = bind_addr;
|
|
// If a network binder is available, use it to bind a socket to an interface
|
|
// instead of bind(), since this is more reliable on an OS with a weak host
|
|
// model.
|
|
if (ss_->network_binder() && !bind_addr.IsAnyIP()) {
|
|
NetworkBindingResult result =
|
|
ss_->network_binder()->BindSocketToNetwork(s_, bind_addr.ipaddr());
|
|
if (result == NetworkBindingResult::SUCCESS) {
|
|
// Since the network binder handled binding the socket to the desired
|
|
// network interface, we don't need to (and shouldn't) include an IP in
|
|
// the bind() call; bind() just needs to assign a port.
|
|
copied_bind_addr.SetIP(GetAnyIP(copied_bind_addr.ipaddr().family()));
|
|
} else if (result == NetworkBindingResult::NOT_IMPLEMENTED) {
|
|
RTC_LOG(LS_INFO) << "Can't bind socket to network because "
|
|
"network binding is not implemented for this OS.";
|
|
} else {
|
|
if (bind_addr.IsLoopbackIP()) {
|
|
// If we couldn't bind to a loopback IP (which should only happen in
|
|
// test scenarios), continue on. This may be expected behavior.
|
|
RTC_LOG(LS_VERBOSE) << "Binding socket to loopback address"
|
|
<< " failed; result: " << static_cast<int>(result);
|
|
} else {
|
|
RTC_LOG(LS_WARNING) << "Binding socket to network address"
|
|
<< " failed; result: " << static_cast<int>(result);
|
|
// If a network binding was attempted and failed, we should stop here
|
|
// and not try to use the socket. Otherwise, we may end up sending
|
|
// packets with an invalid source address.
|
|
// See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7026
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
sockaddr_storage addr_storage;
|
|
size_t len = copied_bind_addr.ToSockAddrStorage(&addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int err = ::bind(s_, addr, static_cast<int>(len));
|
|
UpdateLastError();
|
|
#if !defined(NDEBUG)
|
|
if (0 == err) {
|
|
dbg_addr_ = "Bound @ ";
|
|
dbg_addr_.append(GetLocalAddress().ToString());
|
|
}
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
int PhysicalSocket::Connect(const SocketAddress& addr) {
|
|
// TODO(pthatcher): Implicit creation is required to reconnect...
|
|
// ...but should we make it more explicit?
|
|
if (state_ != CS_CLOSED) {
|
|
SetError(EALREADY);
|
|
return SOCKET_ERROR;
|
|
}
|
|
if (addr.IsUnresolvedIP()) {
|
|
RTC_LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
|
|
resolver_ = new AsyncResolver();
|
|
resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
|
|
resolver_->Start(addr);
|
|
state_ = CS_CONNECTING;
|
|
return 0;
|
|
}
|
|
|
|
return DoConnect(addr);
|
|
}
|
|
|
|
int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) {
|
|
if ((s_ == INVALID_SOCKET) && !Create(connect_addr.family(), SOCK_STREAM)) {
|
|
return SOCKET_ERROR;
|
|
}
|
|
sockaddr_storage addr_storage;
|
|
size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int err = ::connect(s_, addr, static_cast<int>(len));
|
|
UpdateLastError();
|
|
uint8_t events = DE_READ | DE_WRITE;
|
|
if (err == 0) {
|
|
state_ = CS_CONNECTED;
|
|
} else if (IsBlockingError(GetError())) {
|
|
state_ = CS_CONNECTING;
|
|
events |= DE_CONNECT;
|
|
} else {
|
|
return SOCKET_ERROR;
|
|
}
|
|
|
|
EnableEvents(events);
|
|
return 0;
|
|
}
|
|
|
|
int PhysicalSocket::GetError() const {
|
|
CritScope cs(&crit_);
|
|
return error_;
|
|
}
|
|
|
|
void PhysicalSocket::SetError(int error) {
|
|
CritScope cs(&crit_);
|
|
error_ = error;
|
|
}
|
|
|
|
AsyncSocket::ConnState PhysicalSocket::GetState() const {
|
|
return state_;
|
|
}
|
|
|
|
int PhysicalSocket::GetOption(Option opt, int* value) {
|
|
int slevel;
|
|
int sopt;
|
|
if (TranslateOption(opt, &slevel, &sopt) == -1)
|
|
return -1;
|
|
socklen_t optlen = sizeof(*value);
|
|
int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
|
|
if (ret == -1) {
|
|
return -1;
|
|
}
|
|
if (opt == OPT_DONTFRAGMENT) {
|
|
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
|
|
*value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
|
|
#endif
|
|
} else if (opt == OPT_DSCP) {
|
|
#if defined(WEBRTC_POSIX)
|
|
// unshift DSCP value to get six most significant bits of IP DiffServ field
|
|
*value >>= 2;
|
|
#endif
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int PhysicalSocket::SetOption(Option opt, int value) {
|
|
int slevel;
|
|
int sopt;
|
|
if (TranslateOption(opt, &slevel, &sopt) == -1)
|
|
return -1;
|
|
if (opt == OPT_DONTFRAGMENT) {
|
|
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
|
|
value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
|
|
#endif
|
|
} else if (opt == OPT_DSCP) {
|
|
#if defined(WEBRTC_POSIX)
|
|
// shift DSCP value to fit six most significant bits of IP DiffServ field
|
|
value <<= 2;
|
|
#endif
|
|
}
|
|
#if defined(WEBRTC_POSIX)
|
|
if (sopt == IPV6_TCLASS) {
|
|
// Set the IPv4 option in all cases to support dual-stack sockets.
|
|
::setsockopt(s_, IPPROTO_IP, IP_TOS, (SockOptArg)&value, sizeof(value));
|
|
}
|
|
#endif
|
|
return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
|
|
}
|
|
|
|
int PhysicalSocket::Send(const void* pv, size_t cb) {
|
|
int sent = DoSend(
|
|
s_, reinterpret_cast<const char*>(pv), static_cast<int>(cb),
|
|
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
|
|
// Suppress SIGPIPE. Without this, attempting to send on a socket whose
|
|
// other end is closed will result in a SIGPIPE signal being raised to
|
|
// our process, which by default will terminate the process, which we
|
|
// don't want. By specifying this flag, we'll just get the error EPIPE
|
|
// instead and can handle the error gracefully.
|
|
MSG_NOSIGNAL
|
|
#else
|
|
0
|
|
#endif
|
|
);
|
|
UpdateLastError();
|
|
MaybeRemapSendError();
|
|
// We have seen minidumps where this may be false.
|
|
RTC_DCHECK(sent <= static_cast<int>(cb));
|
|
if ((sent > 0 && sent < static_cast<int>(cb)) ||
|
|
(sent < 0 && IsBlockingError(GetError()))) {
|
|
EnableEvents(DE_WRITE);
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
int PhysicalSocket::SendTo(const void* buffer,
|
|
size_t length,
|
|
const SocketAddress& addr) {
|
|
sockaddr_storage saddr;
|
|
size_t len = addr.ToSockAddrStorage(&saddr);
|
|
int sent =
|
|
DoSendTo(s_, static_cast<const char*>(buffer), static_cast<int>(length),
|
|
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
|
|
// Suppress SIGPIPE. See above for explanation.
|
|
MSG_NOSIGNAL,
|
|
#else
|
|
0,
|
|
#endif
|
|
reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
|
|
UpdateLastError();
|
|
MaybeRemapSendError();
|
|
// We have seen minidumps where this may be false.
|
|
RTC_DCHECK(sent <= static_cast<int>(length));
|
|
if ((sent > 0 && sent < static_cast<int>(length)) ||
|
|
(sent < 0 && IsBlockingError(GetError()))) {
|
|
EnableEvents(DE_WRITE);
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
int PhysicalSocket::Recv(void* buffer, size_t length, int64_t* timestamp) {
|
|
int received =
|
|
::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0);
|
|
if ((received == 0) && (length != 0)) {
|
|
// Note: on graceful shutdown, recv can return 0. In this case, we
|
|
// pretend it is blocking, and then signal close, so that simplifying
|
|
// assumptions can be made about Recv.
|
|
RTC_LOG(LS_WARNING) << "EOF from socket; deferring close event";
|
|
// Must turn this back on so that the select() loop will notice the close
|
|
// event.
|
|
EnableEvents(DE_READ);
|
|
SetError(EWOULDBLOCK);
|
|
return SOCKET_ERROR;
|
|
}
|
|
if (timestamp) {
|
|
*timestamp = GetSocketRecvTimestamp(s_);
|
|
}
|
|
UpdateLastError();
|
|
int error = GetError();
|
|
bool success = (received >= 0) || IsBlockingError(error);
|
|
if (udp_ || success) {
|
|
EnableEvents(DE_READ);
|
|
}
|
|
if (!success) {
|
|
RTC_LOG_F(LS_VERBOSE) << "Error = " << error;
|
|
}
|
|
return received;
|
|
}
|
|
|
|
int PhysicalSocket::RecvFrom(void* buffer,
|
|
size_t length,
|
|
SocketAddress* out_addr,
|
|
int64_t* timestamp) {
|
|
sockaddr_storage addr_storage;
|
|
socklen_t addr_len = sizeof(addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int received = ::recvfrom(s_, static_cast<char*>(buffer),
|
|
static_cast<int>(length), 0, addr, &addr_len);
|
|
if (timestamp) {
|
|
*timestamp = GetSocketRecvTimestamp(s_);
|
|
}
|
|
UpdateLastError();
|
|
if ((received >= 0) && (out_addr != nullptr))
|
|
SocketAddressFromSockAddrStorage(addr_storage, out_addr);
|
|
int error = GetError();
|
|
bool success = (received >= 0) || IsBlockingError(error);
|
|
if (udp_ || success) {
|
|
EnableEvents(DE_READ);
|
|
}
|
|
if (!success) {
|
|
RTC_LOG_F(LS_VERBOSE) << "Error = " << error;
|
|
}
|
|
return received;
|
|
}
|
|
|
|
int PhysicalSocket::Listen(int backlog) {
|
|
int err = ::listen(s_, backlog);
|
|
UpdateLastError();
|
|
if (err == 0) {
|
|
state_ = CS_CONNECTING;
|
|
EnableEvents(DE_ACCEPT);
|
|
#if !defined(NDEBUG)
|
|
dbg_addr_ = "Listening @ ";
|
|
dbg_addr_.append(GetLocalAddress().ToString());
|
|
#endif
|
|
}
|
|
return err;
|
|
}
|
|
|
|
AsyncSocket* PhysicalSocket::Accept(SocketAddress* out_addr) {
|
|
// Always re-subscribe DE_ACCEPT to make sure new incoming connections will
|
|
// trigger an event even if DoAccept returns an error here.
|
|
EnableEvents(DE_ACCEPT);
|
|
sockaddr_storage addr_storage;
|
|
socklen_t addr_len = sizeof(addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
SOCKET s = DoAccept(s_, addr, &addr_len);
|
|
UpdateLastError();
|
|
if (s == INVALID_SOCKET)
|
|
return nullptr;
|
|
if (out_addr != nullptr)
|
|
SocketAddressFromSockAddrStorage(addr_storage, out_addr);
|
|
return ss_->WrapSocket(s);
|
|
}
|
|
|
|
int PhysicalSocket::Close() {
|
|
if (s_ == INVALID_SOCKET)
|
|
return 0;
|
|
int err = ::closesocket(s_);
|
|
UpdateLastError();
|
|
s_ = INVALID_SOCKET;
|
|
state_ = CS_CLOSED;
|
|
SetEnabledEvents(0);
|
|
if (resolver_) {
|
|
resolver_->Destroy(false);
|
|
resolver_ = nullptr;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
SOCKET PhysicalSocket::DoAccept(SOCKET socket,
|
|
sockaddr* addr,
|
|
socklen_t* addrlen) {
|
|
return ::accept(socket, addr, addrlen);
|
|
}
|
|
|
|
int PhysicalSocket::DoSend(SOCKET socket, const char* buf, int len, int flags) {
|
|
return ::send(socket, buf, len, flags);
|
|
}
|
|
|
|
int PhysicalSocket::DoSendTo(SOCKET socket,
|
|
const char* buf,
|
|
int len,
|
|
int flags,
|
|
const struct sockaddr* dest_addr,
|
|
socklen_t addrlen) {
|
|
return ::sendto(socket, buf, len, flags, dest_addr, addrlen);
|
|
}
|
|
|
|
void PhysicalSocket::OnResolveResult(AsyncResolverInterface* resolver) {
|
|
if (resolver != resolver_) {
|
|
return;
|
|
}
|
|
|
|
int error = resolver_->GetError();
|
|
if (error == 0) {
|
|
error = DoConnect(resolver_->address());
|
|
} else {
|
|
Close();
|
|
}
|
|
|
|
if (error) {
|
|
SetError(error);
|
|
SignalCloseEvent(this, error);
|
|
}
|
|
}
|
|
|
|
void PhysicalSocket::UpdateLastError() {
|
|
SetError(LAST_SYSTEM_ERROR);
|
|
}
|
|
|
|
void PhysicalSocket::MaybeRemapSendError() {
|
|
#if defined(WEBRTC_MAC)
|
|
// https://developer.apple.com/library/mac/documentation/Darwin/
|
|
// Reference/ManPages/man2/sendto.2.html
|
|
// ENOBUFS - The output queue for a network interface is full.
|
|
// This generally indicates that the interface has stopped sending,
|
|
// but may be caused by transient congestion.
|
|
if (GetError() == ENOBUFS) {
|
|
SetError(EWOULDBLOCK);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void PhysicalSocket::SetEnabledEvents(uint8_t events) {
|
|
enabled_events_ = events;
|
|
}
|
|
|
|
void PhysicalSocket::EnableEvents(uint8_t events) {
|
|
enabled_events_ |= events;
|
|
}
|
|
|
|
void PhysicalSocket::DisableEvents(uint8_t events) {
|
|
enabled_events_ &= ~events;
|
|
}
|
|
|
|
int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) {
|
|
switch (opt) {
|
|
case OPT_DONTFRAGMENT:
|
|
#if defined(WEBRTC_WIN)
|
|
*slevel = IPPROTO_IP;
|
|
*sopt = IP_DONTFRAGMENT;
|
|
break;
|
|
#elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__)
|
|
RTC_LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
|
|
return -1;
|
|
#elif defined(WEBRTC_POSIX)
|
|
*slevel = IPPROTO_IP;
|
|
*sopt = IP_MTU_DISCOVER;
|
|
break;
|
|
#endif
|
|
case OPT_RCVBUF:
|
|
*slevel = SOL_SOCKET;
|
|
*sopt = SO_RCVBUF;
|
|
break;
|
|
case OPT_SNDBUF:
|
|
*slevel = SOL_SOCKET;
|
|
*sopt = SO_SNDBUF;
|
|
break;
|
|
case OPT_NODELAY:
|
|
*slevel = IPPROTO_TCP;
|
|
*sopt = TCP_NODELAY;
|
|
break;
|
|
case OPT_DSCP:
|
|
#if defined(WEBRTC_POSIX)
|
|
if (family_ == AF_INET6) {
|
|
*slevel = IPPROTO_IPV6;
|
|
*sopt = IPV6_TCLASS;
|
|
} else {
|
|
*slevel = IPPROTO_IP;
|
|
*sopt = IP_TOS;
|
|
}
|
|
break;
|
|
#else
|
|
RTC_LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
|
|
return -1;
|
|
#endif
|
|
case OPT_RTP_SENDTIME_EXTN_ID:
|
|
return -1; // No logging is necessary as this not a OS socket option.
|
|
default:
|
|
RTC_NOTREACHED();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SocketDispatcher::SocketDispatcher(PhysicalSocketServer* ss)
|
|
#if defined(WEBRTC_WIN)
|
|
: PhysicalSocket(ss),
|
|
id_(0),
|
|
signal_close_(false)
|
|
#else
|
|
: PhysicalSocket(ss)
|
|
#endif
|
|
{
|
|
}
|
|
|
|
SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
|
|
#if defined(WEBRTC_WIN)
|
|
: PhysicalSocket(ss, s),
|
|
id_(0),
|
|
signal_close_(false)
|
|
#else
|
|
: PhysicalSocket(ss, s)
|
|
#endif
|
|
{
|
|
}
|
|
|
|
SocketDispatcher::~SocketDispatcher() {
|
|
Close();
|
|
}
|
|
|
|
bool SocketDispatcher::Initialize() {
|
|
RTC_DCHECK(s_ != INVALID_SOCKET);
|
|
// Must be a non-blocking
|
|
#if defined(WEBRTC_WIN)
|
|
u_long argp = 1;
|
|
ioctlsocket(s_, FIONBIO, &argp);
|
|
#elif defined(WEBRTC_POSIX)
|
|
fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
|
|
#endif
|
|
#if defined(WEBRTC_IOS)
|
|
// iOS may kill sockets when the app is moved to the background
|
|
// (specifically, if the app doesn't use the "voip" UIBackgroundMode). When
|
|
// we attempt to write to such a socket, SIGPIPE will be raised, which by
|
|
// default will terminate the process, which we don't want. By specifying
|
|
// this socket option, SIGPIPE will be disabled for the socket.
|
|
int value = 1;
|
|
::setsockopt(s_, SOL_SOCKET, SO_NOSIGPIPE, &value, sizeof(value));
|
|
#endif
|
|
ss_->Add(this);
|
|
return true;
|
|
}
|
|
|
|
bool SocketDispatcher::Create(int type) {
|
|
return Create(AF_INET, type);
|
|
}
|
|
|
|
bool SocketDispatcher::Create(int family, int type) {
|
|
// Change the socket to be non-blocking.
|
|
if (!PhysicalSocket::Create(family, type))
|
|
return false;
|
|
|
|
if (!Initialize())
|
|
return false;
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
do {
|
|
id_ = ++next_id_;
|
|
} while (id_ == 0);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
|
|
WSAEVENT SocketDispatcher::GetWSAEvent() {
|
|
return WSA_INVALID_EVENT;
|
|
}
|
|
|
|
SOCKET SocketDispatcher::GetSocket() {
|
|
return s_;
|
|
}
|
|
|
|
bool SocketDispatcher::CheckSignalClose() {
|
|
if (!signal_close_)
|
|
return false;
|
|
|
|
char ch;
|
|
if (recv(s_, &ch, 1, MSG_PEEK) > 0)
|
|
return false;
|
|
|
|
state_ = CS_CLOSED;
|
|
signal_close_ = false;
|
|
SignalCloseEvent(this, signal_err_);
|
|
return true;
|
|
}
|
|
|
|
int SocketDispatcher::next_id_ = 0;
|
|
|
|
#elif defined(WEBRTC_POSIX)
|
|
|
|
int SocketDispatcher::GetDescriptor() {
|
|
return s_;
|
|
}
|
|
|
|
bool SocketDispatcher::IsDescriptorClosed() {
|
|
if (udp_) {
|
|
// The MSG_PEEK trick doesn't work for UDP, since (at least in some
|
|
// circumstances) it requires reading an entire UDP packet, which would be
|
|
// bad for performance here. So, just check whether |s_| has been closed,
|
|
// which should be sufficient.
|
|
return s_ == INVALID_SOCKET;
|
|
}
|
|
// We don't have a reliable way of distinguishing end-of-stream
|
|
// from readability. So test on each readable call. Is this
|
|
// inefficient? Probably.
|
|
char ch;
|
|
ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
|
|
if (res > 0) {
|
|
// Data available, so not closed.
|
|
return false;
|
|
} else if (res == 0) {
|
|
// EOF, so closed.
|
|
return true;
|
|
} else { // error
|
|
switch (errno) {
|
|
// Returned if we've already closed s_.
|
|
case EBADF:
|
|
// Returned during ungraceful peer shutdown.
|
|
case ECONNRESET:
|
|
return true;
|
|
// The normal blocking error; don't log anything.
|
|
case EWOULDBLOCK:
|
|
// Interrupted system call.
|
|
case EINTR:
|
|
return false;
|
|
default:
|
|
// Assume that all other errors are just blocking errors, meaning the
|
|
// connection is still good but we just can't read from it right now.
|
|
// This should only happen when connecting (and at most once), because
|
|
// in all other cases this function is only called if the file
|
|
// descriptor is already known to be in the readable state. However,
|
|
// it's not necessary a problem if we spuriously interpret a
|
|
// "connection lost"-type error as a blocking error, because typically
|
|
// the next recv() will get EOF, so we'll still eventually notice that
|
|
// the socket is closed.
|
|
RTC_LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // WEBRTC_POSIX
|
|
|
|
uint32_t SocketDispatcher::GetRequestedEvents() {
|
|
return enabled_events();
|
|
}
|
|
|
|
void SocketDispatcher::OnPreEvent(uint32_t ff) {
|
|
if ((ff & DE_CONNECT) != 0)
|
|
state_ = CS_CONNECTED;
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
// We set CS_CLOSED from CheckSignalClose.
|
|
#elif defined(WEBRTC_POSIX)
|
|
if ((ff & DE_CLOSE) != 0)
|
|
state_ = CS_CLOSED;
|
|
#endif
|
|
}
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
|
|
void SocketDispatcher::OnEvent(uint32_t ff, int err) {
|
|
int cache_id = id_;
|
|
// Make sure we deliver connect/accept first. Otherwise, consumers may see
|
|
// something like a READ followed by a CONNECT, which would be odd.
|
|
if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
|
|
if (ff != DE_CONNECT)
|
|
RTC_LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
|
|
DisableEvents(DE_CONNECT);
|
|
#if !defined(NDEBUG)
|
|
dbg_addr_ = "Connected @ ";
|
|
dbg_addr_.append(GetRemoteAddress().ToString());
|
|
#endif
|
|
SignalConnectEvent(this);
|
|
}
|
|
if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
|
|
DisableEvents(DE_ACCEPT);
|
|
SignalReadEvent(this);
|
|
}
|
|
if ((ff & DE_READ) != 0) {
|
|
DisableEvents(DE_READ);
|
|
SignalReadEvent(this);
|
|
}
|
|
if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
|
|
DisableEvents(DE_WRITE);
|
|
SignalWriteEvent(this);
|
|
}
|
|
if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
|
|
signal_close_ = true;
|
|
signal_err_ = err;
|
|
}
|
|
}
|
|
|
|
#elif defined(WEBRTC_POSIX)
|
|
|
|
void SocketDispatcher::OnEvent(uint32_t ff, int err) {
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
// Remember currently enabled events so we can combine multiple changes
|
|
// into one update call later.
|
|
// The signal handlers might re-enable events disabled here, so we can't
|
|
// keep a list of events to disable at the end of the method. This list
|
|
// would not be updated with the events enabled by the signal handlers.
|
|
StartBatchedEventUpdates();
|
|
#endif
|
|
// Make sure we deliver connect/accept first. Otherwise, consumers may see
|
|
// something like a READ followed by a CONNECT, which would be odd.
|
|
if ((ff & DE_CONNECT) != 0) {
|
|
DisableEvents(DE_CONNECT);
|
|
SignalConnectEvent(this);
|
|
}
|
|
if ((ff & DE_ACCEPT) != 0) {
|
|
DisableEvents(DE_ACCEPT);
|
|
SignalReadEvent(this);
|
|
}
|
|
if ((ff & DE_READ) != 0) {
|
|
DisableEvents(DE_READ);
|
|
SignalReadEvent(this);
|
|
}
|
|
if ((ff & DE_WRITE) != 0) {
|
|
DisableEvents(DE_WRITE);
|
|
SignalWriteEvent(this);
|
|
}
|
|
if ((ff & DE_CLOSE) != 0) {
|
|
// The socket is now dead to us, so stop checking it.
|
|
SetEnabledEvents(0);
|
|
SignalCloseEvent(this, err);
|
|
}
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
FinishBatchedEventUpdates();
|
|
#endif
|
|
}
|
|
|
|
#endif // WEBRTC_POSIX
|
|
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
|
|
inline static int GetEpollEvents(uint32_t ff) {
|
|
int events = 0;
|
|
if (ff & (DE_READ | DE_ACCEPT)) {
|
|
events |= EPOLLIN;
|
|
}
|
|
if (ff & (DE_WRITE | DE_CONNECT)) {
|
|
events |= EPOLLOUT;
|
|
}
|
|
return events;
|
|
}
|
|
|
|
void SocketDispatcher::StartBatchedEventUpdates() {
|
|
RTC_DCHECK_EQ(saved_enabled_events_, -1);
|
|
saved_enabled_events_ = enabled_events();
|
|
}
|
|
|
|
void SocketDispatcher::FinishBatchedEventUpdates() {
|
|
RTC_DCHECK_NE(saved_enabled_events_, -1);
|
|
uint8_t old_events = static_cast<uint8_t>(saved_enabled_events_);
|
|
saved_enabled_events_ = -1;
|
|
MaybeUpdateDispatcher(old_events);
|
|
}
|
|
|
|
void SocketDispatcher::MaybeUpdateDispatcher(uint8_t old_events) {
|
|
if (GetEpollEvents(enabled_events()) != GetEpollEvents(old_events) &&
|
|
saved_enabled_events_ == -1) {
|
|
ss_->Update(this);
|
|
}
|
|
}
|
|
|
|
void SocketDispatcher::SetEnabledEvents(uint8_t events) {
|
|
uint8_t old_events = enabled_events();
|
|
PhysicalSocket::SetEnabledEvents(events);
|
|
MaybeUpdateDispatcher(old_events);
|
|
}
|
|
|
|
void SocketDispatcher::EnableEvents(uint8_t events) {
|
|
uint8_t old_events = enabled_events();
|
|
PhysicalSocket::EnableEvents(events);
|
|
MaybeUpdateDispatcher(old_events);
|
|
}
|
|
|
|
void SocketDispatcher::DisableEvents(uint8_t events) {
|
|
uint8_t old_events = enabled_events();
|
|
PhysicalSocket::DisableEvents(events);
|
|
MaybeUpdateDispatcher(old_events);
|
|
}
|
|
|
|
#endif // WEBRTC_USE_EPOLL
|
|
|
|
int SocketDispatcher::Close() {
|
|
if (s_ == INVALID_SOCKET)
|
|
return 0;
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
id_ = 0;
|
|
signal_close_ = false;
|
|
#endif
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
// If we're batching events, the socket can be closed and reopened
|
|
// during the batch. Set saved_enabled_events_ to 0 here so the new
|
|
// socket, if any, has the correct old events bitfield
|
|
if (saved_enabled_events_ != -1) {
|
|
saved_enabled_events_ = 0;
|
|
}
|
|
#endif
|
|
ss_->Remove(this);
|
|
return PhysicalSocket::Close();
|
|
}
|
|
|
|
#if defined(WEBRTC_POSIX)
|
|
class EventDispatcher : public Dispatcher {
|
|
public:
|
|
EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
|
|
if (pipe(afd_) < 0)
|
|
RTC_LOG(LERROR) << "pipe failed";
|
|
ss_->Add(this);
|
|
}
|
|
|
|
~EventDispatcher() override {
|
|
ss_->Remove(this);
|
|
close(afd_[0]);
|
|
close(afd_[1]);
|
|
}
|
|
|
|
virtual void Signal() {
|
|
CritScope cs(&crit_);
|
|
if (!fSignaled_) {
|
|
const uint8_t b[1] = {0};
|
|
const ssize_t res = write(afd_[1], b, sizeof(b));
|
|
RTC_DCHECK_EQ(1, res);
|
|
fSignaled_ = true;
|
|
}
|
|
}
|
|
|
|
uint32_t GetRequestedEvents() override { return DE_READ; }
|
|
|
|
void OnPreEvent(uint32_t ff) override {
|
|
// It is not possible to perfectly emulate an auto-resetting event with
|
|
// pipes. This simulates it by resetting before the event is handled.
|
|
|
|
CritScope cs(&crit_);
|
|
if (fSignaled_) {
|
|
uint8_t b[4]; // Allow for reading more than 1 byte, but expect 1.
|
|
const ssize_t res = read(afd_[0], b, sizeof(b));
|
|
RTC_DCHECK_EQ(1, res);
|
|
fSignaled_ = false;
|
|
}
|
|
}
|
|
|
|
void OnEvent(uint32_t ff, int err) override { RTC_NOTREACHED(); }
|
|
|
|
int GetDescriptor() override { return afd_[0]; }
|
|
|
|
bool IsDescriptorClosed() override { return false; }
|
|
|
|
private:
|
|
PhysicalSocketServer* ss_;
|
|
int afd_[2];
|
|
bool fSignaled_;
|
|
RecursiveCriticalSection crit_;
|
|
};
|
|
|
|
#endif // WEBRTC_POSIX
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
static uint32_t FlagsToEvents(uint32_t events) {
|
|
uint32_t ffFD = FD_CLOSE;
|
|
if (events & DE_READ)
|
|
ffFD |= FD_READ;
|
|
if (events & DE_WRITE)
|
|
ffFD |= FD_WRITE;
|
|
if (events & DE_CONNECT)
|
|
ffFD |= FD_CONNECT;
|
|
if (events & DE_ACCEPT)
|
|
ffFD |= FD_ACCEPT;
|
|
return ffFD;
|
|
}
|
|
|
|
class EventDispatcher : public Dispatcher {
|
|
public:
|
|
EventDispatcher(PhysicalSocketServer* ss) : ss_(ss) {
|
|
hev_ = WSACreateEvent();
|
|
if (hev_) {
|
|
ss_->Add(this);
|
|
}
|
|
}
|
|
|
|
~EventDispatcher() override {
|
|
if (hev_ != nullptr) {
|
|
ss_->Remove(this);
|
|
WSACloseEvent(hev_);
|
|
hev_ = nullptr;
|
|
}
|
|
}
|
|
|
|
virtual void Signal() {
|
|
if (hev_ != nullptr)
|
|
WSASetEvent(hev_);
|
|
}
|
|
|
|
uint32_t GetRequestedEvents() override { return 0; }
|
|
|
|
void OnPreEvent(uint32_t ff) override { WSAResetEvent(hev_); }
|
|
|
|
void OnEvent(uint32_t ff, int err) override {}
|
|
|
|
WSAEVENT GetWSAEvent() override { return hev_; }
|
|
|
|
SOCKET GetSocket() override { return INVALID_SOCKET; }
|
|
|
|
bool CheckSignalClose() override { return false; }
|
|
|
|
private:
|
|
PhysicalSocketServer* ss_;
|
|
WSAEVENT hev_;
|
|
};
|
|
#endif // WEBRTC_WIN
|
|
|
|
// Sets the value of a boolean value to false when signaled.
|
|
class Signaler : public EventDispatcher {
|
|
public:
|
|
Signaler(PhysicalSocketServer* ss, bool* pf) : EventDispatcher(ss), pf_(pf) {}
|
|
~Signaler() override {}
|
|
|
|
void OnEvent(uint32_t ff, int err) override {
|
|
if (pf_)
|
|
*pf_ = false;
|
|
}
|
|
|
|
private:
|
|
bool* pf_;
|
|
};
|
|
|
|
PhysicalSocketServer::PhysicalSocketServer()
|
|
:
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
// Since Linux 2.6.8, the size argument is ignored, but must be greater
|
|
// than zero. Before that the size served as hint to the kernel for the
|
|
// amount of space to initially allocate in internal data structures.
|
|
epoll_fd_(epoll_create(FD_SETSIZE)),
|
|
#endif
|
|
#if defined(WEBRTC_WIN)
|
|
socket_ev_(WSACreateEvent()),
|
|
#endif
|
|
fWait_(false) {
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
if (epoll_fd_ == -1) {
|
|
// Not an error, will fall back to "select" below.
|
|
RTC_LOG_E(LS_WARNING, EN, errno) << "epoll_create";
|
|
// Note that -1 == INVALID_SOCKET, the alias used by later checks.
|
|
}
|
|
#endif
|
|
signal_wakeup_ = new Signaler(this, &fWait_);
|
|
}
|
|
|
|
PhysicalSocketServer::~PhysicalSocketServer() {
|
|
#if defined(WEBRTC_WIN)
|
|
WSACloseEvent(socket_ev_);
|
|
#endif
|
|
delete signal_wakeup_;
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
if (epoll_fd_ != INVALID_SOCKET) {
|
|
close(epoll_fd_);
|
|
}
|
|
#endif
|
|
RTC_DCHECK(dispatcher_by_key_.empty());
|
|
RTC_DCHECK(key_by_dispatcher_.empty());
|
|
}
|
|
|
|
void PhysicalSocketServer::WakeUp() {
|
|
signal_wakeup_->Signal();
|
|
}
|
|
|
|
Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
|
|
PhysicalSocket* socket = new PhysicalSocket(this);
|
|
if (socket->Create(family, type)) {
|
|
return socket;
|
|
} else {
|
|
delete socket;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
|
|
SocketDispatcher* dispatcher = new SocketDispatcher(this);
|
|
if (dispatcher->Create(family, type)) {
|
|
return dispatcher;
|
|
} else {
|
|
delete dispatcher;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
|
|
SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
|
|
if (dispatcher->Initialize()) {
|
|
return dispatcher;
|
|
} else {
|
|
delete dispatcher;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void PhysicalSocketServer::Add(Dispatcher* pdispatcher) {
|
|
CritScope cs(&crit_);
|
|
if (key_by_dispatcher_.count(pdispatcher)) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "PhysicalSocketServer asked to add a duplicate dispatcher.";
|
|
return;
|
|
}
|
|
uint64_t key = next_dispatcher_key_++;
|
|
dispatcher_by_key_.emplace(key, pdispatcher);
|
|
key_by_dispatcher_.emplace(pdispatcher, key);
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
if (epoll_fd_ != INVALID_SOCKET) {
|
|
AddEpoll(pdispatcher, key);
|
|
}
|
|
#endif // WEBRTC_USE_EPOLL
|
|
}
|
|
|
|
void PhysicalSocketServer::Remove(Dispatcher* pdispatcher) {
|
|
CritScope cs(&crit_);
|
|
if (!key_by_dispatcher_.count(pdispatcher)) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "PhysicalSocketServer asked to remove a unknown "
|
|
"dispatcher, potentially from a duplicate call to Add.";
|
|
return;
|
|
}
|
|
uint64_t key = key_by_dispatcher_.at(pdispatcher);
|
|
key_by_dispatcher_.erase(pdispatcher);
|
|
dispatcher_by_key_.erase(key);
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
if (epoll_fd_ != INVALID_SOCKET) {
|
|
RemoveEpoll(pdispatcher);
|
|
}
|
|
#endif // WEBRTC_USE_EPOLL
|
|
}
|
|
|
|
void PhysicalSocketServer::Update(Dispatcher* pdispatcher) {
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
if (epoll_fd_ == INVALID_SOCKET) {
|
|
return;
|
|
}
|
|
|
|
// Don't update dispatchers that haven't yet been added.
|
|
CritScope cs(&crit_);
|
|
if (!key_by_dispatcher_.count(pdispatcher)) {
|
|
return;
|
|
}
|
|
|
|
UpdateEpoll(pdispatcher, key_by_dispatcher_.at(pdispatcher));
|
|
#endif
|
|
}
|
|
|
|
#if defined(WEBRTC_POSIX)
|
|
|
|
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
|
|
// We don't support reentrant waiting.
|
|
RTC_DCHECK(!waiting_);
|
|
ScopedSetTrue s(&waiting_);
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
// We don't keep a dedicated "epoll" descriptor containing only the non-IO
|
|
// (i.e. signaling) dispatcher, so "poll" will be used instead of the default
|
|
// "select" to support sockets larger than FD_SETSIZE.
|
|
if (!process_io) {
|
|
return WaitPoll(cmsWait, signal_wakeup_);
|
|
} else if (epoll_fd_ != INVALID_SOCKET) {
|
|
return WaitEpoll(cmsWait);
|
|
}
|
|
#endif
|
|
return WaitSelect(cmsWait, process_io);
|
|
}
|
|
|
|
static void ProcessEvents(Dispatcher* dispatcher,
|
|
bool readable,
|
|
bool writable,
|
|
bool check_error) {
|
|
int errcode = 0;
|
|
// TODO(pthatcher): Should we set errcode if getsockopt fails?
|
|
if (check_error) {
|
|
socklen_t len = sizeof(errcode);
|
|
::getsockopt(dispatcher->GetDescriptor(), SOL_SOCKET, SO_ERROR, &errcode,
|
|
&len);
|
|
}
|
|
|
|
// Most often the socket is writable or readable or both, so make a single
|
|
// virtual call to get requested events
|
|
const uint32_t requested_events = dispatcher->GetRequestedEvents();
|
|
uint32_t ff = 0;
|
|
|
|
// Check readable descriptors. If we're waiting on an accept, signal
|
|
// that. Otherwise we're waiting for data, check to see if we're
|
|
// readable or really closed.
|
|
// TODO(pthatcher): Only peek at TCP descriptors.
|
|
if (readable) {
|
|
if (requested_events & DE_ACCEPT) {
|
|
ff |= DE_ACCEPT;
|
|
} else if (errcode || dispatcher->IsDescriptorClosed()) {
|
|
ff |= DE_CLOSE;
|
|
} else {
|
|
ff |= DE_READ;
|
|
}
|
|
}
|
|
|
|
// Check writable descriptors. If we're waiting on a connect, detect
|
|
// success versus failure by the reaped error code.
|
|
if (writable) {
|
|
if (requested_events & DE_CONNECT) {
|
|
if (!errcode) {
|
|
ff |= DE_CONNECT;
|
|
} else {
|
|
ff |= DE_CLOSE;
|
|
}
|
|
} else {
|
|
ff |= DE_WRITE;
|
|
}
|
|
}
|
|
|
|
// Tell the descriptor about the event.
|
|
if (ff != 0) {
|
|
dispatcher->OnPreEvent(ff);
|
|
dispatcher->OnEvent(ff, errcode);
|
|
}
|
|
}
|
|
|
|
bool PhysicalSocketServer::WaitSelect(int cmsWait, bool process_io) {
|
|
// Calculate timing information
|
|
|
|
struct timeval* ptvWait = nullptr;
|
|
struct timeval tvWait;
|
|
int64_t stop_us;
|
|
if (cmsWait != kForever) {
|
|
// Calculate wait timeval
|
|
tvWait.tv_sec = cmsWait / 1000;
|
|
tvWait.tv_usec = (cmsWait % 1000) * 1000;
|
|
ptvWait = &tvWait;
|
|
|
|
// Calculate when to return
|
|
stop_us = rtc::TimeMicros() + cmsWait * 1000;
|
|
}
|
|
|
|
|
|
fd_set fdsRead;
|
|
fd_set fdsWrite;
|
|
// Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the
|
|
// inline assembly in FD_ZERO.
|
|
// http://crbug.com/344505
|
|
#ifdef MEMORY_SANITIZER
|
|
__msan_unpoison(&fdsRead, sizeof(fdsRead));
|
|
__msan_unpoison(&fdsWrite, sizeof(fdsWrite));
|
|
#endif
|
|
|
|
fWait_ = true;
|
|
|
|
while (fWait_) {
|
|
// Zero all fd_sets. Although select() zeros the descriptors not signaled,
|
|
// we may need to do this for dispatchers that were deleted while
|
|
// iterating.
|
|
FD_ZERO(&fdsRead);
|
|
FD_ZERO(&fdsWrite);
|
|
int fdmax = -1;
|
|
{
|
|
CritScope cr(&crit_);
|
|
current_dispatcher_keys_.clear();
|
|
for (auto const& kv : dispatcher_by_key_) {
|
|
uint64_t key = kv.first;
|
|
Dispatcher* pdispatcher = kv.second;
|
|
// Query dispatchers for read and write wait state
|
|
if (!process_io && (pdispatcher != signal_wakeup_))
|
|
continue;
|
|
current_dispatcher_keys_.push_back(key);
|
|
int fd = pdispatcher->GetDescriptor();
|
|
// "select"ing a file descriptor that is equal to or larger than
|
|
// FD_SETSIZE will result in undefined behavior.
|
|
RTC_DCHECK_LT(fd, FD_SETSIZE);
|
|
if (fd > fdmax)
|
|
fdmax = fd;
|
|
|
|
uint32_t ff = pdispatcher->GetRequestedEvents();
|
|
if (ff & (DE_READ | DE_ACCEPT))
|
|
FD_SET(fd, &fdsRead);
|
|
if (ff & (DE_WRITE | DE_CONNECT))
|
|
FD_SET(fd, &fdsWrite);
|
|
}
|
|
}
|
|
|
|
// Wait then call handlers as appropriate
|
|
// < 0 means error
|
|
// 0 means timeout
|
|
// > 0 means count of descriptors ready
|
|
int n = select(fdmax + 1, &fdsRead, &fdsWrite, nullptr, ptvWait);
|
|
|
|
// If error, return error.
|
|
if (n < 0) {
|
|
if (errno != EINTR) {
|
|
RTC_LOG_E(LS_ERROR, EN, errno) << "select";
|
|
return false;
|
|
}
|
|
// Else ignore the error and keep going. If this EINTR was for one of the
|
|
// signals managed by this PhysicalSocketServer, the
|
|
// PosixSignalDeliveryDispatcher will be in the signaled state in the next
|
|
// iteration.
|
|
} else if (n == 0) {
|
|
// If timeout, return success
|
|
return true;
|
|
} else {
|
|
// We have signaled descriptors
|
|
CritScope cr(&crit_);
|
|
// Iterate only on the dispatchers whose sockets were passed into
|
|
// WSAEventSelect; this avoids the ABA problem (a socket being
|
|
// destroyed and a new one created with the same file descriptor).
|
|
for (uint64_t key : current_dispatcher_keys_) {
|
|
if (!dispatcher_by_key_.count(key))
|
|
continue;
|
|
Dispatcher* pdispatcher = dispatcher_by_key_.at(key);
|
|
|
|
int fd = pdispatcher->GetDescriptor();
|
|
|
|
bool readable = FD_ISSET(fd, &fdsRead);
|
|
if (readable) {
|
|
FD_CLR(fd, &fdsRead);
|
|
}
|
|
|
|
bool writable = FD_ISSET(fd, &fdsWrite);
|
|
if (writable) {
|
|
FD_CLR(fd, &fdsWrite);
|
|
}
|
|
|
|
// The error code can be signaled through reads or writes.
|
|
ProcessEvents(pdispatcher, readable, writable, readable || writable);
|
|
}
|
|
}
|
|
|
|
// Recalc the time remaining to wait. Doing it here means it doesn't get
|
|
// calced twice the first time through the loop
|
|
if (ptvWait) {
|
|
ptvWait->tv_sec = 0;
|
|
ptvWait->tv_usec = 0;
|
|
int64_t time_left_us = stop_us - rtc::TimeMicros();
|
|
if (time_left_us > 0) {
|
|
ptvWait->tv_sec = time_left_us / rtc::kNumMicrosecsPerSec;
|
|
ptvWait->tv_usec = time_left_us % rtc::kNumMicrosecsPerSec;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#if defined(WEBRTC_USE_EPOLL)
|
|
|
|
void PhysicalSocketServer::AddEpoll(Dispatcher* pdispatcher, uint64_t key) {
|
|
RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
|
|
int fd = pdispatcher->GetDescriptor();
|
|
RTC_DCHECK(fd != INVALID_SOCKET);
|
|
if (fd == INVALID_SOCKET) {
|
|
return;
|
|
}
|
|
|
|
struct epoll_event event = {0};
|
|
event.events = GetEpollEvents(pdispatcher->GetRequestedEvents());
|
|
event.data.u64 = key;
|
|
int err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event);
|
|
RTC_DCHECK_EQ(err, 0);
|
|
if (err == -1) {
|
|
RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD";
|
|
}
|
|
}
|
|
|
|
void PhysicalSocketServer::RemoveEpoll(Dispatcher* pdispatcher) {
|
|
RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
|
|
int fd = pdispatcher->GetDescriptor();
|
|
RTC_DCHECK(fd != INVALID_SOCKET);
|
|
if (fd == INVALID_SOCKET) {
|
|
return;
|
|
}
|
|
|
|
struct epoll_event event = {0};
|
|
int err = epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event);
|
|
RTC_DCHECK(err == 0 || errno == ENOENT);
|
|
if (err == -1) {
|
|
if (errno == ENOENT) {
|
|
// Socket has already been closed.
|
|
RTC_LOG_E(LS_VERBOSE, EN, errno) << "epoll_ctl EPOLL_CTL_DEL";
|
|
} else {
|
|
RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_DEL";
|
|
}
|
|
}
|
|
}
|
|
|
|
void PhysicalSocketServer::UpdateEpoll(Dispatcher* pdispatcher, uint64_t key) {
|
|
RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
|
|
int fd = pdispatcher->GetDescriptor();
|
|
RTC_DCHECK(fd != INVALID_SOCKET);
|
|
if (fd == INVALID_SOCKET) {
|
|
return;
|
|
}
|
|
|
|
struct epoll_event event = {0};
|
|
event.events = GetEpollEvents(pdispatcher->GetRequestedEvents());
|
|
event.data.u64 = key;
|
|
int err = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, fd, &event);
|
|
RTC_DCHECK_EQ(err, 0);
|
|
if (err == -1) {
|
|
RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_MOD";
|
|
}
|
|
}
|
|
|
|
bool PhysicalSocketServer::WaitEpoll(int cmsWait) {
|
|
RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
|
|
int64_t tvWait = -1;
|
|
int64_t tvStop = -1;
|
|
if (cmsWait != kForever) {
|
|
tvWait = cmsWait;
|
|
tvStop = TimeAfter(cmsWait);
|
|
}
|
|
|
|
fWait_ = true;
|
|
while (fWait_) {
|
|
// Wait then call handlers as appropriate
|
|
// < 0 means error
|
|
// 0 means timeout
|
|
// > 0 means count of descriptors ready
|
|
int n = epoll_wait(epoll_fd_, epoll_events_.data(), epoll_events_.size(),
|
|
static_cast<int>(tvWait));
|
|
if (n < 0) {
|
|
if (errno != EINTR) {
|
|
RTC_LOG_E(LS_ERROR, EN, errno) << "epoll";
|
|
return false;
|
|
}
|
|
// Else ignore the error and keep going. If this EINTR was for one of the
|
|
// signals managed by this PhysicalSocketServer, the
|
|
// PosixSignalDeliveryDispatcher will be in the signaled state in the next
|
|
// iteration.
|
|
} else if (n == 0) {
|
|
// If timeout, return success
|
|
return true;
|
|
} else {
|
|
// We have signaled descriptors
|
|
CritScope cr(&crit_);
|
|
for (int i = 0; i < n; ++i) {
|
|
const epoll_event& event = epoll_events_[i];
|
|
uint64_t key = event.data.u64;
|
|
if (!dispatcher_by_key_.count(key)) {
|
|
// The dispatcher for this socket no longer exists.
|
|
continue;
|
|
}
|
|
Dispatcher* pdispatcher = dispatcher_by_key_.at(key);
|
|
|
|
bool readable = (event.events & (EPOLLIN | EPOLLPRI));
|
|
bool writable = (event.events & EPOLLOUT);
|
|
bool check_error = (event.events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP));
|
|
|
|
ProcessEvents(pdispatcher, readable, writable, check_error);
|
|
}
|
|
}
|
|
|
|
if (cmsWait != kForever) {
|
|
tvWait = TimeDiff(tvStop, TimeMillis());
|
|
if (tvWait <= 0) {
|
|
// Return success on timeout.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PhysicalSocketServer::WaitPoll(int cmsWait, Dispatcher* dispatcher) {
|
|
RTC_DCHECK(dispatcher);
|
|
int64_t tvWait = -1;
|
|
int64_t tvStop = -1;
|
|
if (cmsWait != kForever) {
|
|
tvWait = cmsWait;
|
|
tvStop = TimeAfter(cmsWait);
|
|
}
|
|
|
|
fWait_ = true;
|
|
|
|
struct pollfd fds = {0};
|
|
int fd = dispatcher->GetDescriptor();
|
|
fds.fd = fd;
|
|
|
|
while (fWait_) {
|
|
uint32_t ff = dispatcher->GetRequestedEvents();
|
|
fds.events = 0;
|
|
if (ff & (DE_READ | DE_ACCEPT)) {
|
|
fds.events |= POLLIN;
|
|
}
|
|
if (ff & (DE_WRITE | DE_CONNECT)) {
|
|
fds.events |= POLLOUT;
|
|
}
|
|
fds.revents = 0;
|
|
|
|
// Wait then call handlers as appropriate
|
|
// < 0 means error
|
|
// 0 means timeout
|
|
// > 0 means count of descriptors ready
|
|
int n = poll(&fds, 1, static_cast<int>(tvWait));
|
|
if (n < 0) {
|
|
if (errno != EINTR) {
|
|
RTC_LOG_E(LS_ERROR, EN, errno) << "poll";
|
|
return false;
|
|
}
|
|
// Else ignore the error and keep going. If this EINTR was for one of the
|
|
// signals managed by this PhysicalSocketServer, the
|
|
// PosixSignalDeliveryDispatcher will be in the signaled state in the next
|
|
// iteration.
|
|
} else if (n == 0) {
|
|
// If timeout, return success
|
|
return true;
|
|
} else {
|
|
// We have signaled descriptors (should only be the passed dispatcher).
|
|
RTC_DCHECK_EQ(n, 1);
|
|
RTC_DCHECK_EQ(fds.fd, fd);
|
|
|
|
bool readable = (fds.revents & (POLLIN | POLLPRI));
|
|
bool writable = (fds.revents & POLLOUT);
|
|
bool check_error = (fds.revents & (POLLRDHUP | POLLERR | POLLHUP));
|
|
|
|
ProcessEvents(dispatcher, readable, writable, check_error);
|
|
}
|
|
|
|
if (cmsWait != kForever) {
|
|
tvWait = TimeDiff(tvStop, TimeMillis());
|
|
if (tvWait < 0) {
|
|
// Return success on timeout.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif // WEBRTC_USE_EPOLL
|
|
|
|
#endif // WEBRTC_POSIX
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
|
|
// We don't support reentrant waiting.
|
|
RTC_DCHECK(!waiting_);
|
|
ScopedSetTrue s(&waiting_);
|
|
|
|
int64_t cmsTotal = cmsWait;
|
|
int64_t cmsElapsed = 0;
|
|
int64_t msStart = Time();
|
|
|
|
fWait_ = true;
|
|
while (fWait_) {
|
|
std::vector<WSAEVENT> events;
|
|
std::vector<uint64_t> event_owners;
|
|
|
|
events.push_back(socket_ev_);
|
|
|
|
{
|
|
CritScope cr(&crit_);
|
|
// Get a snapshot of all current dispatchers; this is used to avoid the
|
|
// ABA problem (see later comment) and avoids the dispatcher_by_key_
|
|
// iterator being invalidated by calling CheckSignalClose, which may
|
|
// remove the dispatcher from the list.
|
|
current_dispatcher_keys_.clear();
|
|
for (auto const& kv : dispatcher_by_key_) {
|
|
current_dispatcher_keys_.push_back(kv.first);
|
|
}
|
|
for (uint64_t key : current_dispatcher_keys_) {
|
|
if (!dispatcher_by_key_.count(key)) {
|
|
continue;
|
|
}
|
|
Dispatcher* disp = dispatcher_by_key_.at(key);
|
|
if (!disp)
|
|
continue;
|
|
if (!process_io && (disp != signal_wakeup_))
|
|
continue;
|
|
SOCKET s = disp->GetSocket();
|
|
if (disp->CheckSignalClose()) {
|
|
// We just signalled close, don't poll this socket.
|
|
} else if (s != INVALID_SOCKET) {
|
|
WSAEventSelect(s, events[0],
|
|
FlagsToEvents(disp->GetRequestedEvents()));
|
|
} else {
|
|
events.push_back(disp->GetWSAEvent());
|
|
event_owners.push_back(key);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Which is shorter, the delay wait or the asked wait?
|
|
|
|
int64_t cmsNext;
|
|
if (cmsWait == kForever) {
|
|
cmsNext = cmsWait;
|
|
} else {
|
|
cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
|
|
}
|
|
|
|
// Wait for one of the events to signal
|
|
DWORD dw =
|
|
WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), &events[0],
|
|
false, static_cast<DWORD>(cmsNext), false);
|
|
|
|
if (dw == WSA_WAIT_FAILED) {
|
|
// Failed?
|
|
// TODO(pthatcher): need a better strategy than this!
|
|
WSAGetLastError();
|
|
RTC_NOTREACHED();
|
|
return false;
|
|
} else if (dw == WSA_WAIT_TIMEOUT) {
|
|
// Timeout?
|
|
return true;
|
|
} else {
|
|
// Figure out which one it is and call it
|
|
CritScope cr(&crit_);
|
|
int index = dw - WSA_WAIT_EVENT_0;
|
|
if (index > 0) {
|
|
--index; // The first event is the socket event
|
|
uint64_t key = event_owners[index];
|
|
if (!dispatcher_by_key_.count(key)) {
|
|
// The dispatcher could have been removed while waiting for events.
|
|
continue;
|
|
}
|
|
Dispatcher* disp = dispatcher_by_key_.at(key);
|
|
disp->OnPreEvent(0);
|
|
disp->OnEvent(0, 0);
|
|
} else if (process_io) {
|
|
// Iterate only on the dispatchers whose sockets were passed into
|
|
// WSAEventSelect; this avoids the ABA problem (a socket being
|
|
// destroyed and a new one created with the same SOCKET handle).
|
|
for (uint64_t key : current_dispatcher_keys_) {
|
|
if (!dispatcher_by_key_.count(key)) {
|
|
continue;
|
|
}
|
|
Dispatcher* disp = dispatcher_by_key_.at(key);
|
|
SOCKET s = disp->GetSocket();
|
|
if (s == INVALID_SOCKET)
|
|
continue;
|
|
|
|
WSANETWORKEVENTS wsaEvents;
|
|
int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
|
|
if (err == 0) {
|
|
{
|
|
if ((wsaEvents.lNetworkEvents & FD_READ) &&
|
|
wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
|
|
RTC_LOG(WARNING)
|
|
<< "PhysicalSocketServer got FD_READ_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_READ_BIT];
|
|
}
|
|
if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
|
|
wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
|
|
RTC_LOG(WARNING)
|
|
<< "PhysicalSocketServer got FD_WRITE_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_WRITE_BIT];
|
|
}
|
|
if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
|
|
wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
|
|
RTC_LOG(WARNING)
|
|
<< "PhysicalSocketServer got FD_CONNECT_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_CONNECT_BIT];
|
|
}
|
|
if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
|
|
wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
|
|
RTC_LOG(WARNING)
|
|
<< "PhysicalSocketServer got FD_ACCEPT_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_ACCEPT_BIT];
|
|
}
|
|
if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
|
|
wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
|
|
RTC_LOG(WARNING)
|
|
<< "PhysicalSocketServer got FD_CLOSE_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_CLOSE_BIT];
|
|
}
|
|
}
|
|
uint32_t ff = 0;
|
|
int errcode = 0;
|
|
if (wsaEvents.lNetworkEvents & FD_READ)
|
|
ff |= DE_READ;
|
|
if (wsaEvents.lNetworkEvents & FD_WRITE)
|
|
ff |= DE_WRITE;
|
|
if (wsaEvents.lNetworkEvents & FD_CONNECT) {
|
|
if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
|
|
ff |= DE_CONNECT;
|
|
} else {
|
|
ff |= DE_CLOSE;
|
|
errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
|
|
}
|
|
}
|
|
if (wsaEvents.lNetworkEvents & FD_ACCEPT)
|
|
ff |= DE_ACCEPT;
|
|
if (wsaEvents.lNetworkEvents & FD_CLOSE) {
|
|
ff |= DE_CLOSE;
|
|
errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
|
|
}
|
|
if (ff != 0) {
|
|
disp->OnPreEvent(ff);
|
|
disp->OnEvent(ff, errcode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reset the network event until new activity occurs
|
|
WSAResetEvent(socket_ev_);
|
|
}
|
|
|
|
// Break?
|
|
if (!fWait_)
|
|
break;
|
|
cmsElapsed = TimeSince(msStart);
|
|
if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Done
|
|
return true;
|
|
}
|
|
#endif // WEBRTC_WIN
|
|
|
|
} // namespace rtc
|