744 lines
27 KiB
C++
744 lines
27 KiB
C++
// Copyright 2018 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// MOTIVATION AND TUTORIAL
|
|
//
|
|
// If you want to put in a single heap allocation N doubles followed by M ints,
|
|
// it's easy if N and M are known at compile time.
|
|
//
|
|
// struct S {
|
|
// double a[N];
|
|
// int b[M];
|
|
// };
|
|
//
|
|
// S* p = new S;
|
|
//
|
|
// But what if N and M are known only in run time? Class template Layout to the
|
|
// rescue! It's a portable generalization of the technique known as struct hack.
|
|
//
|
|
// // This object will tell us everything we need to know about the memory
|
|
// // layout of double[N] followed by int[M]. It's structurally identical to
|
|
// // size_t[2] that stores N and M. It's very cheap to create.
|
|
// const Layout<double, int> layout(N, M);
|
|
//
|
|
// // Allocate enough memory for both arrays. `AllocSize()` tells us how much
|
|
// // memory is needed. We are free to use any allocation function we want as
|
|
// // long as it returns aligned memory.
|
|
// std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
|
|
//
|
|
// // Obtain the pointer to the array of doubles.
|
|
// // Equivalent to `reinterpret_cast<double*>(p.get())`.
|
|
// //
|
|
// // We could have written layout.Pointer<0>(p) instead. If all the types are
|
|
// // unique you can use either form, but if some types are repeated you must
|
|
// // use the index form.
|
|
// double* a = layout.Pointer<double>(p.get());
|
|
//
|
|
// // Obtain the pointer to the array of ints.
|
|
// // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
|
|
// int* b = layout.Pointer<int>(p);
|
|
//
|
|
// If we are unable to specify sizes of all fields, we can pass as many sizes as
|
|
// we can to `Partial()`. In return, it'll allow us to access the fields whose
|
|
// locations and sizes can be computed from the provided information.
|
|
// `Partial()` comes in handy when the array sizes are embedded into the
|
|
// allocation.
|
|
//
|
|
// // size_t[1] containing N, size_t[1] containing M, double[N], int[M].
|
|
// using L = Layout<size_t, size_t, double, int>;
|
|
//
|
|
// unsigned char* Allocate(size_t n, size_t m) {
|
|
// const L layout(1, 1, n, m);
|
|
// unsigned char* p = new unsigned char[layout.AllocSize()];
|
|
// *layout.Pointer<0>(p) = n;
|
|
// *layout.Pointer<1>(p) = m;
|
|
// return p;
|
|
// }
|
|
//
|
|
// void Use(unsigned char* p) {
|
|
// // First, extract N and M.
|
|
// // Specify that the first array has only one element. Using `prefix` we
|
|
// // can access the first two arrays but not more.
|
|
// constexpr auto prefix = L::Partial(1);
|
|
// size_t n = *prefix.Pointer<0>(p);
|
|
// size_t m = *prefix.Pointer<1>(p);
|
|
//
|
|
// // Now we can get pointers to the payload.
|
|
// const L layout(1, 1, n, m);
|
|
// double* a = layout.Pointer<double>(p);
|
|
// int* b = layout.Pointer<int>(p);
|
|
// }
|
|
//
|
|
// The layout we used above combines fixed-size with dynamically-sized fields.
|
|
// This is quite common. Layout is optimized for this use case and generates
|
|
// optimal code. All computations that can be performed at compile time are
|
|
// indeed performed at compile time.
|
|
//
|
|
// Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
|
|
// ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
|
|
// padding in between arrays.
|
|
//
|
|
// You can manually override the alignment of an array by wrapping the type in
|
|
// `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
|
|
// and behavior as `Layout<..., T, ...>` except that the first element of the
|
|
// array of `T` is aligned to `N` (the rest of the elements follow without
|
|
// padding). `N` cannot be less than `alignof(T)`.
|
|
//
|
|
// `AllocSize()` and `Pointer()` are the most basic methods for dealing with
|
|
// memory layouts. Check out the reference or code below to discover more.
|
|
//
|
|
// EXAMPLE
|
|
//
|
|
// // Immutable move-only string with sizeof equal to sizeof(void*). The
|
|
// // string size and the characters are kept in the same heap allocation.
|
|
// class CompactString {
|
|
// public:
|
|
// CompactString(const char* s = "") {
|
|
// const size_t size = strlen(s);
|
|
// // size_t[1] followed by char[size + 1].
|
|
// const L layout(1, size + 1);
|
|
// p_.reset(new unsigned char[layout.AllocSize()]);
|
|
// // If running under ASAN, mark the padding bytes, if any, to catch
|
|
// // memory errors.
|
|
// layout.PoisonPadding(p_.get());
|
|
// // Store the size in the allocation.
|
|
// *layout.Pointer<size_t>(p_.get()) = size;
|
|
// // Store the characters in the allocation.
|
|
// memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
|
|
// }
|
|
//
|
|
// size_t size() const {
|
|
// // Equivalent to reinterpret_cast<size_t&>(*p).
|
|
// return *L::Partial().Pointer<size_t>(p_.get());
|
|
// }
|
|
//
|
|
// const char* c_str() const {
|
|
// // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
|
|
// // The argument in Partial(1) specifies that we have size_t[1] in front
|
|
// // of the characters.
|
|
// return L::Partial(1).Pointer<char>(p_.get());
|
|
// }
|
|
//
|
|
// private:
|
|
// // Our heap allocation contains a size_t followed by an array of chars.
|
|
// using L = Layout<size_t, char>;
|
|
// std::unique_ptr<unsigned char[]> p_;
|
|
// };
|
|
//
|
|
// int main() {
|
|
// CompactString s = "hello";
|
|
// assert(s.size() == 5);
|
|
// assert(strcmp(s.c_str(), "hello") == 0);
|
|
// }
|
|
//
|
|
// DOCUMENTATION
|
|
//
|
|
// The interface exported by this file consists of:
|
|
// - class `Layout<>` and its public members.
|
|
// - The public members of class `internal_layout::LayoutImpl<>`. That class
|
|
// isn't intended to be used directly, and its name and template parameter
|
|
// list are internal implementation details, but the class itself provides
|
|
// most of the functionality in this file. See comments on its members for
|
|
// detailed documentation.
|
|
//
|
|
// `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
|
|
// `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
|
|
// creates a `Layout` object, which exposes the same functionality by inheriting
|
|
// from `LayoutImpl<>`.
|
|
|
|
#ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
|
|
#define ABSL_CONTAINER_INTERNAL_LAYOUT_H_
|
|
|
|
#include <assert.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <ostream>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <typeinfo>
|
|
#include <utility>
|
|
|
|
#include "absl/base/config.h"
|
|
#include "absl/meta/type_traits.h"
|
|
#include "absl/strings/str_cat.h"
|
|
#include "absl/types/span.h"
|
|
#include "absl/utility/utility.h"
|
|
|
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER
|
|
#include <sanitizer/asan_interface.h>
|
|
#endif
|
|
|
|
#if defined(__GXX_RTTI)
|
|
#define ABSL_INTERNAL_HAS_CXA_DEMANGLE
|
|
#endif
|
|
|
|
#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
|
|
#include <cxxabi.h>
|
|
#endif
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
namespace container_internal {
|
|
|
|
// A type wrapper that instructs `Layout` to use the specific alignment for the
|
|
// array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
|
|
// and behavior as `Layout<..., T, ...>` except that the first element of the
|
|
// array of `T` is aligned to `N` (the rest of the elements follow without
|
|
// padding).
|
|
//
|
|
// Requires: `N >= alignof(T)` and `N` is a power of 2.
|
|
template <class T, size_t N>
|
|
struct Aligned;
|
|
|
|
namespace internal_layout {
|
|
|
|
template <class T>
|
|
struct NotAligned {};
|
|
|
|
template <class T, size_t N>
|
|
struct NotAligned<const Aligned<T, N>> {
|
|
static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
|
|
};
|
|
|
|
template <size_t>
|
|
using IntToSize = size_t;
|
|
|
|
template <class>
|
|
using TypeToSize = size_t;
|
|
|
|
template <class T>
|
|
struct Type : NotAligned<T> {
|
|
using type = T;
|
|
};
|
|
|
|
template <class T, size_t N>
|
|
struct Type<Aligned<T, N>> {
|
|
using type = T;
|
|
};
|
|
|
|
template <class T>
|
|
struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};
|
|
|
|
template <class T, size_t N>
|
|
struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};
|
|
|
|
// Note: workaround for https://gcc.gnu.org/PR88115
|
|
template <class T>
|
|
struct AlignOf : NotAligned<T> {
|
|
static constexpr size_t value = alignof(T);
|
|
};
|
|
|
|
template <class T, size_t N>
|
|
struct AlignOf<Aligned<T, N>> {
|
|
static_assert(N % alignof(T) == 0,
|
|
"Custom alignment can't be lower than the type's alignment");
|
|
static constexpr size_t value = N;
|
|
};
|
|
|
|
// Does `Ts...` contain `T`?
|
|
template <class T, class... Ts>
|
|
using Contains = absl::disjunction<std::is_same<T, Ts>...>;
|
|
|
|
template <class From, class To>
|
|
using CopyConst =
|
|
typename std::conditional<std::is_const<From>::value, const To, To>::type;
|
|
|
|
// Note: We're not qualifying this with absl:: because it doesn't compile under
|
|
// MSVC.
|
|
template <class T>
|
|
using SliceType = Span<T>;
|
|
|
|
// This namespace contains no types. It prevents functions defined in it from
|
|
// being found by ADL.
|
|
namespace adl_barrier {
|
|
|
|
template <class Needle, class... Ts>
|
|
constexpr size_t Find(Needle, Needle, Ts...) {
|
|
static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
|
|
return 0;
|
|
}
|
|
|
|
template <class Needle, class T, class... Ts>
|
|
constexpr size_t Find(Needle, T, Ts...) {
|
|
return adl_barrier::Find(Needle(), Ts()...) + 1;
|
|
}
|
|
|
|
constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }
|
|
|
|
// Returns `q * m` for the smallest `q` such that `q * m >= n`.
|
|
// Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
|
|
constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }
|
|
|
|
constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }
|
|
|
|
constexpr size_t Max(size_t a) { return a; }
|
|
|
|
template <class... Ts>
|
|
constexpr size_t Max(size_t a, size_t b, Ts... rest) {
|
|
return adl_barrier::Max(b < a ? a : b, rest...);
|
|
}
|
|
|
|
template <class T>
|
|
std::string TypeName() {
|
|
std::string out;
|
|
int status = 0;
|
|
char* demangled = nullptr;
|
|
#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
|
|
demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status);
|
|
#endif
|
|
if (status == 0 && demangled != nullptr) { // Demangling succeeded.
|
|
absl::StrAppend(&out, "<", demangled, ">");
|
|
free(demangled);
|
|
} else {
|
|
#if defined(__GXX_RTTI) || defined(_CPPRTTI)
|
|
absl::StrAppend(&out, "<", typeid(T).name(), ">");
|
|
#endif
|
|
}
|
|
return out;
|
|
}
|
|
|
|
} // namespace adl_barrier
|
|
|
|
template <bool C>
|
|
using EnableIf = typename std::enable_if<C, int>::type;
|
|
|
|
// Can `T` be a template argument of `Layout`?
|
|
template <class T>
|
|
using IsLegalElementType = std::integral_constant<
|
|
bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
|
|
!std::is_reference<typename Type<T>::type>::value &&
|
|
!std::is_volatile<typename Type<T>::type>::value &&
|
|
adl_barrier::IsPow2(AlignOf<T>::value)>;
|
|
|
|
template <class Elements, class SizeSeq, class OffsetSeq>
|
|
class LayoutImpl;
|
|
|
|
// Public base class of `Layout` and the result type of `Layout::Partial()`.
|
|
//
|
|
// `Elements...` contains all template arguments of `Layout` that created this
|
|
// instance.
|
|
//
|
|
// `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments
|
|
// passed to `Layout::Partial()` or `Layout::Layout()`.
|
|
//
|
|
// `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
|
|
// `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
|
|
// can compute offsets).
|
|
template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq>
|
|
class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>,
|
|
absl::index_sequence<OffsetSeq...>> {
|
|
private:
|
|
static_assert(sizeof...(Elements) > 0, "At least one field is required");
|
|
static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
|
|
"Invalid element type (see IsLegalElementType)");
|
|
|
|
enum {
|
|
NumTypes = sizeof...(Elements),
|
|
NumSizes = sizeof...(SizeSeq),
|
|
NumOffsets = sizeof...(OffsetSeq),
|
|
};
|
|
|
|
// These are guaranteed by `Layout`.
|
|
static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
|
|
"Internal error");
|
|
static_assert(NumTypes > 0, "Internal error");
|
|
|
|
// Returns the index of `T` in `Elements...`. Results in a compilation error
|
|
// if `Elements...` doesn't contain exactly one instance of `T`.
|
|
template <class T>
|
|
static constexpr size_t ElementIndex() {
|
|
static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
|
|
"Type not found");
|
|
return adl_barrier::Find(Type<T>(),
|
|
Type<typename Type<Elements>::type>()...);
|
|
}
|
|
|
|
template <size_t N>
|
|
using ElementAlignment =
|
|
AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;
|
|
|
|
public:
|
|
// Element types of all arrays packed in a tuple.
|
|
using ElementTypes = std::tuple<typename Type<Elements>::type...>;
|
|
|
|
// Element type of the Nth array.
|
|
template <size_t N>
|
|
using ElementType = typename std::tuple_element<N, ElementTypes>::type;
|
|
|
|
constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes)
|
|
: size_{sizes...} {}
|
|
|
|
// Alignment of the layout, equal to the strictest alignment of all elements.
|
|
// All pointers passed to the methods of layout must be aligned to this value.
|
|
static constexpr size_t Alignment() {
|
|
return adl_barrier::Max(AlignOf<Elements>::value...);
|
|
}
|
|
|
|
// Offset in bytes of the Nth array.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// assert(x.Offset<0>() == 0); // The ints starts from 0.
|
|
// assert(x.Offset<1>() == 16); // The doubles starts from 16.
|
|
//
|
|
// Requires: `N <= NumSizes && N < sizeof...(Ts)`.
|
|
template <size_t N, EnableIf<N == 0> = 0>
|
|
constexpr size_t Offset() const {
|
|
return 0;
|
|
}
|
|
|
|
template <size_t N, EnableIf<N != 0> = 0>
|
|
constexpr size_t Offset() const {
|
|
static_assert(N < NumOffsets, "Index out of bounds");
|
|
return adl_barrier::Align(
|
|
Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1],
|
|
ElementAlignment<N>::value);
|
|
}
|
|
|
|
// Offset in bytes of the array with the specified element type. There must
|
|
// be exactly one such array and its zero-based index must be at most
|
|
// `NumSizes`.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// assert(x.Offset<int>() == 0); // The ints starts from 0.
|
|
// assert(x.Offset<double>() == 16); // The doubles starts from 16.
|
|
template <class T>
|
|
constexpr size_t Offset() const {
|
|
return Offset<ElementIndex<T>()>();
|
|
}
|
|
|
|
// Offsets in bytes of all arrays for which the offsets are known.
|
|
constexpr std::array<size_t, NumOffsets> Offsets() const {
|
|
return {{Offset<OffsetSeq>()...}};
|
|
}
|
|
|
|
// The number of elements in the Nth array. This is the Nth argument of
|
|
// `Layout::Partial()` or `Layout::Layout()` (zero-based).
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// assert(x.Size<0>() == 3);
|
|
// assert(x.Size<1>() == 4);
|
|
//
|
|
// Requires: `N < NumSizes`.
|
|
template <size_t N>
|
|
constexpr size_t Size() const {
|
|
static_assert(N < NumSizes, "Index out of bounds");
|
|
return size_[N];
|
|
}
|
|
|
|
// The number of elements in the array with the specified element type.
|
|
// There must be exactly one such array and its zero-based index must be
|
|
// at most `NumSizes`.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// assert(x.Size<int>() == 3);
|
|
// assert(x.Size<double>() == 4);
|
|
template <class T>
|
|
constexpr size_t Size() const {
|
|
return Size<ElementIndex<T>()>();
|
|
}
|
|
|
|
// The number of elements of all arrays for which they are known.
|
|
constexpr std::array<size_t, NumSizes> Sizes() const {
|
|
return {{Size<SizeSeq>()...}};
|
|
}
|
|
|
|
// Pointer to the beginning of the Nth array.
|
|
//
|
|
// `Char` must be `[const] [signed|unsigned] char`.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// unsigned char* p = new unsigned char[x.AllocSize()];
|
|
// int* ints = x.Pointer<0>(p);
|
|
// double* doubles = x.Pointer<1>(p);
|
|
//
|
|
// Requires: `N <= NumSizes && N < sizeof...(Ts)`.
|
|
// Requires: `p` is aligned to `Alignment()`.
|
|
template <size_t N, class Char>
|
|
CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
|
|
using C = typename std::remove_const<Char>::type;
|
|
static_assert(
|
|
std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
|
|
std::is_same<C, signed char>(),
|
|
"The argument must be a pointer to [const] [signed|unsigned] char");
|
|
constexpr size_t alignment = Alignment();
|
|
(void)alignment;
|
|
assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
|
|
return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
|
|
}
|
|
|
|
// Pointer to the beginning of the array with the specified element type.
|
|
// There must be exactly one such array and its zero-based index must be at
|
|
// most `NumSizes`.
|
|
//
|
|
// `Char` must be `[const] [signed|unsigned] char`.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// unsigned char* p = new unsigned char[x.AllocSize()];
|
|
// int* ints = x.Pointer<int>(p);
|
|
// double* doubles = x.Pointer<double>(p);
|
|
//
|
|
// Requires: `p` is aligned to `Alignment()`.
|
|
template <class T, class Char>
|
|
CopyConst<Char, T>* Pointer(Char* p) const {
|
|
return Pointer<ElementIndex<T>()>(p);
|
|
}
|
|
|
|
// Pointers to all arrays for which pointers are known.
|
|
//
|
|
// `Char` must be `[const] [signed|unsigned] char`.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// unsigned char* p = new unsigned char[x.AllocSize()];
|
|
//
|
|
// int* ints;
|
|
// double* doubles;
|
|
// std::tie(ints, doubles) = x.Pointers(p);
|
|
//
|
|
// Requires: `p` is aligned to `Alignment()`.
|
|
//
|
|
// Note: We're not using ElementType alias here because it does not compile
|
|
// under MSVC.
|
|
template <class Char>
|
|
std::tuple<CopyConst<
|
|
Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...>
|
|
Pointers(Char* p) const {
|
|
return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
|
|
Pointer<OffsetSeq>(p)...);
|
|
}
|
|
|
|
// The Nth array.
|
|
//
|
|
// `Char` must be `[const] [signed|unsigned] char`.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// unsigned char* p = new unsigned char[x.AllocSize()];
|
|
// Span<int> ints = x.Slice<0>(p);
|
|
// Span<double> doubles = x.Slice<1>(p);
|
|
//
|
|
// Requires: `N < NumSizes`.
|
|
// Requires: `p` is aligned to `Alignment()`.
|
|
template <size_t N, class Char>
|
|
SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
|
|
return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
|
|
}
|
|
|
|
// The array with the specified element type. There must be exactly one
|
|
// such array and its zero-based index must be less than `NumSizes`.
|
|
//
|
|
// `Char` must be `[const] [signed|unsigned] char`.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// unsigned char* p = new unsigned char[x.AllocSize()];
|
|
// Span<int> ints = x.Slice<int>(p);
|
|
// Span<double> doubles = x.Slice<double>(p);
|
|
//
|
|
// Requires: `p` is aligned to `Alignment()`.
|
|
template <class T, class Char>
|
|
SliceType<CopyConst<Char, T>> Slice(Char* p) const {
|
|
return Slice<ElementIndex<T>()>(p);
|
|
}
|
|
|
|
// All arrays with known sizes.
|
|
//
|
|
// `Char` must be `[const] [signed|unsigned] char`.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// unsigned char* p = new unsigned char[x.AllocSize()];
|
|
//
|
|
// Span<int> ints;
|
|
// Span<double> doubles;
|
|
// std::tie(ints, doubles) = x.Slices(p);
|
|
//
|
|
// Requires: `p` is aligned to `Alignment()`.
|
|
//
|
|
// Note: We're not using ElementType alias here because it does not compile
|
|
// under MSVC.
|
|
template <class Char>
|
|
std::tuple<SliceType<CopyConst<
|
|
Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...>
|
|
Slices(Char* p) const {
|
|
// Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed
|
|
// in 6.1).
|
|
(void)p;
|
|
return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
|
|
Slice<SizeSeq>(p)...);
|
|
}
|
|
|
|
// The size of the allocation that fits all arrays.
|
|
//
|
|
// // int[3], 4 bytes of padding, double[4].
|
|
// Layout<int, double> x(3, 4);
|
|
// unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes
|
|
//
|
|
// Requires: `NumSizes == sizeof...(Ts)`.
|
|
constexpr size_t AllocSize() const {
|
|
static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
|
|
return Offset<NumTypes - 1>() +
|
|
SizeOf<ElementType<NumTypes - 1>>::value * size_[NumTypes - 1];
|
|
}
|
|
|
|
// If built with --config=asan, poisons padding bytes (if any) in the
|
|
// allocation. The pointer must point to a memory block at least
|
|
// `AllocSize()` bytes in length.
|
|
//
|
|
// `Char` must be `[const] [signed|unsigned] char`.
|
|
//
|
|
// Requires: `p` is aligned to `Alignment()`.
|
|
template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0>
|
|
void PoisonPadding(const Char* p) const {
|
|
Pointer<0>(p); // verify the requirements on `Char` and `p`
|
|
}
|
|
|
|
template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0>
|
|
void PoisonPadding(const Char* p) const {
|
|
static_assert(N < NumOffsets, "Index out of bounds");
|
|
(void)p;
|
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER
|
|
PoisonPadding<Char, N - 1>(p);
|
|
// The `if` is an optimization. It doesn't affect the observable behaviour.
|
|
if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) {
|
|
size_t start =
|
|
Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1];
|
|
ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Human-readable description of the memory layout. Useful for debugging.
|
|
// Slow.
|
|
//
|
|
// // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
|
|
// // by an unknown number of doubles.
|
|
// auto x = Layout<char, int, double>::Partial(5, 3);
|
|
// assert(x.DebugString() ==
|
|
// "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
|
|
//
|
|
// Each field is in the following format: @offset<type>(sizeof)[size] (<type>
|
|
// may be missing depending on the target platform). For example,
|
|
// @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
|
|
// int is 4 bytes, and we have 3 of those ints. The size of the last field may
|
|
// be missing (as in the example above). Only fields with known offsets are
|
|
// described. Type names may differ across platforms: one compiler might
|
|
// produce "unsigned*" where another produces "unsigned int *".
|
|
std::string DebugString() const {
|
|
const auto offsets = Offsets();
|
|
const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...};
|
|
const std::string types[] = {
|
|
adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
|
|
std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
|
|
for (size_t i = 0; i != NumOffsets - 1; ++i) {
|
|
absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1],
|
|
"(", sizes[i + 1], ")");
|
|
}
|
|
// NumSizes is a constant that may be zero. Some compilers cannot see that
|
|
// inside the if statement "size_[NumSizes - 1]" must be valid.
|
|
int last = static_cast<int>(NumSizes) - 1;
|
|
if (NumTypes == NumSizes && last >= 0) {
|
|
absl::StrAppend(&res, "[", size_[last], "]");
|
|
}
|
|
return res;
|
|
}
|
|
|
|
private:
|
|
// Arguments of `Layout::Partial()` or `Layout::Layout()`.
|
|
size_t size_[NumSizes > 0 ? NumSizes : 1];
|
|
};
|
|
|
|
template <size_t NumSizes, class... Ts>
|
|
using LayoutType = LayoutImpl<
|
|
std::tuple<Ts...>, absl::make_index_sequence<NumSizes>,
|
|
absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>;
|
|
|
|
} // namespace internal_layout
|
|
|
|
// Descriptor of arrays of various types and sizes laid out in memory one after
|
|
// another. See the top of the file for documentation.
|
|
//
|
|
// Check out the public API of internal_layout::LayoutImpl above. The type is
|
|
// internal to the library but its methods are public, and they are inherited
|
|
// by `Layout`.
|
|
template <class... Ts>
|
|
class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> {
|
|
public:
|
|
static_assert(sizeof...(Ts) > 0, "At least one field is required");
|
|
static_assert(
|
|
absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value,
|
|
"Invalid element type (see IsLegalElementType)");
|
|
|
|
// The result type of `Partial()` with `NumSizes` arguments.
|
|
template <size_t NumSizes>
|
|
using PartialType = internal_layout::LayoutType<NumSizes, Ts...>;
|
|
|
|
// `Layout` knows the element types of the arrays we want to lay out in
|
|
// memory but not the number of elements in each array.
|
|
// `Partial(size1, ..., sizeN)` allows us to specify the latter. The
|
|
// resulting immutable object can be used to obtain pointers to the
|
|
// individual arrays.
|
|
//
|
|
// It's allowed to pass fewer array sizes than the number of arrays. E.g.,
|
|
// if all you need is to the offset of the second array, you only need to
|
|
// pass one argument -- the number of elements in the first array.
|
|
//
|
|
// // int[3] followed by 4 bytes of padding and an unknown number of
|
|
// // doubles.
|
|
// auto x = Layout<int, double>::Partial(3);
|
|
// // doubles start at byte 16.
|
|
// assert(x.Offset<1>() == 16);
|
|
//
|
|
// If you know the number of elements in all arrays, you can still call
|
|
// `Partial()` but it's more convenient to use the constructor of `Layout`.
|
|
//
|
|
// Layout<int, double> x(3, 5);
|
|
//
|
|
// Note: The sizes of the arrays must be specified in number of elements,
|
|
// not in bytes.
|
|
//
|
|
// Requires: `sizeof...(Sizes) <= sizeof...(Ts)`.
|
|
// Requires: all arguments are convertible to `size_t`.
|
|
template <class... Sizes>
|
|
static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
|
|
static_assert(sizeof...(Sizes) <= sizeof...(Ts), "");
|
|
return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...);
|
|
}
|
|
|
|
// Creates a layout with the sizes of all arrays specified. If you know
|
|
// only the sizes of the first N arrays (where N can be zero), you can use
|
|
// `Partial()` defined above. The constructor is essentially equivalent to
|
|
// calling `Partial()` and passing in all array sizes; the constructor is
|
|
// provided as a convenient abbreviation.
|
|
//
|
|
// Note: The sizes of the arrays must be specified in number of elements,
|
|
// not in bytes.
|
|
constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes)
|
|
: internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {}
|
|
};
|
|
|
|
} // namespace container_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_
|