94 lines
3.4 KiB
C++
94 lines
3.4 KiB
C++
// Copyright 2019 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/profiling/internal/exponential_biased.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#include "absl/base/attributes.h"
|
|
#include "absl/base/optimization.h"
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
namespace profiling_internal {
|
|
|
|
// The algorithm generates a random number between 0 and 1 and applies the
|
|
// inverse cumulative distribution function for an exponential. Specifically:
|
|
// Let m be the inverse of the sample period, then the probability
|
|
// distribution function is m*exp(-mx) so the CDF is
|
|
// p = 1 - exp(-mx), so
|
|
// q = 1 - p = exp(-mx)
|
|
// log_e(q) = -mx
|
|
// -log_e(q)/m = x
|
|
// log_2(q) * (-log_e(2) * 1/m) = x
|
|
// In the code, q is actually in the range 1 to 2**26, hence the -26 below
|
|
int64_t ExponentialBiased::GetSkipCount(int64_t mean) {
|
|
if (ABSL_PREDICT_FALSE(!initialized_)) {
|
|
Initialize();
|
|
}
|
|
|
|
uint64_t rng = NextRandom(rng_);
|
|
rng_ = rng;
|
|
|
|
// Take the top 26 bits as the random number
|
|
// (This plus the 1<<58 sampling bound give a max possible step of
|
|
// 5194297183973780480 bytes.)
|
|
// The uint32_t cast is to prevent a (hard-to-reproduce) NAN
|
|
// under piii debug for some binaries.
|
|
double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0;
|
|
// Put the computed p-value through the CDF of a geometric.
|
|
double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean);
|
|
// Very large values of interval overflow int64_t. To avoid that, we will
|
|
// cheat and clamp any huge values to (int64_t max)/2. This is a potential
|
|
// source of bias, but the mean would need to be such a large value that it's
|
|
// not likely to come up. For example, with a mean of 1e18, the probability of
|
|
// hitting this condition is about 1/1000. For a mean of 1e17, standard
|
|
// calculators claim that this event won't happen.
|
|
if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
|
|
// Assume huge values are bias neutral, retain bias for next call.
|
|
return std::numeric_limits<int64_t>::max() / 2;
|
|
}
|
|
double value = std::rint(interval);
|
|
bias_ = interval - value;
|
|
return value;
|
|
}
|
|
|
|
int64_t ExponentialBiased::GetStride(int64_t mean) {
|
|
return GetSkipCount(mean - 1) + 1;
|
|
}
|
|
|
|
void ExponentialBiased::Initialize() {
|
|
// We don't get well distributed numbers from `this` so we call NextRandom() a
|
|
// bunch to mush the bits around. We use a global_rand to handle the case
|
|
// where the same thread (by memory address) gets created and destroyed
|
|
// repeatedly.
|
|
ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
|
|
uint64_t r = reinterpret_cast<uint64_t>(this) +
|
|
global_rand.fetch_add(1, std::memory_order_relaxed);
|
|
for (int i = 0; i < 20; ++i) {
|
|
r = NextRandom(r);
|
|
}
|
|
rng_ = r;
|
|
initialized_ = true;
|
|
}
|
|
|
|
} // namespace profiling_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|