Nagram/TMessagesProj/jni/boringssl/crypto/evp/scrypt.c
2018-07-30 09:07:02 +07:00

210 lines
7.3 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/evp.h>
#include <assert.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/type_check.h>
#include "../internal.h"
// This file implements scrypt, described in RFC 7914.
//
// Note scrypt refers to both "blocks" and a "block size" parameter, r. These
// are two different notions of blocks. A Salsa20 block is 64 bytes long,
// represented in this implementation by 16 |uint32_t|s. |r| determines the
// number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r|
// Salsa20 blocks. This implementation refers to them as Salsa20 blocks and
// scrypt blocks, respectively.
// A block_t is a Salsa20 block.
typedef struct { uint32_t words[16]; } block_t;
OPENSSL_COMPILE_ASSERT(sizeof(block_t) == 64, block_t_has_padding);
#define R(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
// salsa208_word_specification implements the Salsa20/8 core function, also
// described in RFC 7914, section 3. It modifies the block at |inout|
// in-place.
static void salsa208_word_specification(block_t *inout) {
block_t x;
OPENSSL_memcpy(&x, inout, sizeof(x));
for (int i = 8; i > 0; i -= 2) {
x.words[4] ^= R(x.words[0] + x.words[12], 7);
x.words[8] ^= R(x.words[4] + x.words[0], 9);
x.words[12] ^= R(x.words[8] + x.words[4], 13);
x.words[0] ^= R(x.words[12] + x.words[8], 18);
x.words[9] ^= R(x.words[5] + x.words[1], 7);
x.words[13] ^= R(x.words[9] + x.words[5], 9);
x.words[1] ^= R(x.words[13] + x.words[9], 13);
x.words[5] ^= R(x.words[1] + x.words[13], 18);
x.words[14] ^= R(x.words[10] + x.words[6], 7);
x.words[2] ^= R(x.words[14] + x.words[10], 9);
x.words[6] ^= R(x.words[2] + x.words[14], 13);
x.words[10] ^= R(x.words[6] + x.words[2], 18);
x.words[3] ^= R(x.words[15] + x.words[11], 7);
x.words[7] ^= R(x.words[3] + x.words[15], 9);
x.words[11] ^= R(x.words[7] + x.words[3], 13);
x.words[15] ^= R(x.words[11] + x.words[7], 18);
x.words[1] ^= R(x.words[0] + x.words[3], 7);
x.words[2] ^= R(x.words[1] + x.words[0], 9);
x.words[3] ^= R(x.words[2] + x.words[1], 13);
x.words[0] ^= R(x.words[3] + x.words[2], 18);
x.words[6] ^= R(x.words[5] + x.words[4], 7);
x.words[7] ^= R(x.words[6] + x.words[5], 9);
x.words[4] ^= R(x.words[7] + x.words[6], 13);
x.words[5] ^= R(x.words[4] + x.words[7], 18);
x.words[11] ^= R(x.words[10] + x.words[9], 7);
x.words[8] ^= R(x.words[11] + x.words[10], 9);
x.words[9] ^= R(x.words[8] + x.words[11], 13);
x.words[10] ^= R(x.words[9] + x.words[8], 18);
x.words[12] ^= R(x.words[15] + x.words[14], 7);
x.words[13] ^= R(x.words[12] + x.words[15], 9);
x.words[14] ^= R(x.words[13] + x.words[12], 13);
x.words[15] ^= R(x.words[14] + x.words[13], 18);
}
for (int i = 0; i < 16; ++i) {
inout->words[i] += x.words[i];
}
}
// xor_block sets |*out| to be |*a| XOR |*b|.
static void xor_block(block_t *out, const block_t *a, const block_t *b) {
for (size_t i = 0; i < 16; i++) {
out->words[i] = a->words[i] ^ b->words[i];
}
}
// scryptBlockMix implements the function described in RFC 7914, section 4. B'
// is written to |out|. |out| and |B| may not alias and must be each one scrypt
// block (2 * |r| Salsa20 blocks) long.
static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) {
assert(out != B);
block_t X;
OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X));
for (uint64_t i = 0; i < r * 2; i++) {
xor_block(&X, &X, &B[i]);
salsa208_word_specification(&X);
// This implements the permutation in step 3.
OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X));
}
}
// scryptROMix implements the function described in RFC 7914, section 5. |B| is
// an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and
// |V| are scratch space allocated by the caller. |T| must have space for one
// scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt
// blocks (2 * |r| * |N| Salsa20 blocks).
static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T,
block_t *V) {
// Steps 1 and 2.
OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t));
for (uint64_t i = 1; i < N; i++) {
scryptBlockMix(&V[2 * r * i /* scrypt block i */],
&V[2 * r * (i - 1) /* scrypt block i-1 */], r);
}
scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r);
// Step 3.
for (uint64_t i = 0; i < N; i++) {
// Note this assumes |N| <= 2^32 and is a power of 2.
uint32_t j = B[2 * r - 1].words[0] & (N - 1);
for (size_t k = 0; k < 2 * r; k++) {
xor_block(&T[k], &B[k], &V[2 * r * j + k]);
}
scryptBlockMix(B, T, r);
}
}
// SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the
// bounds on p in section 6:
//
// p <= ((2^32-1) * hLen) / MFLen iff
// p <= ((2^32-1) * 32) / (128 * r) iff
// p * r <= (2^30-1)
#define SCRYPT_PR_MAX ((1 << 30) - 1)
// SCRYPT_MAX_MEM is the default maximum memory that may be allocated by
// |EVP_PBE_scrypt|.
#define SCRYPT_MAX_MEM (1024 * 1024 * 32)
int EVP_PBE_scrypt(const char *password, size_t password_len,
const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r,
uint64_t p, size_t max_mem, uint8_t *out_key,
size_t key_len) {
if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r ||
// |N| must be a power of two.
N < 2 || (N & (N - 1)) ||
// We only support |N| <= 2^32 in |scryptROMix|.
N > UINT64_C(1) << 32 ||
// Check that |N| < 2^(128×r / 8).
(16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS);
return 0;
}
// Determine the amount of memory needed. B, T, and V are |p|, 1, and |N|
// scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s.
if (max_mem == 0) {
max_mem = SCRYPT_MAX_MEM;
}
size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t));
if (max_scrypt_blocks < p + 1 ||
max_scrypt_blocks - p - 1 < N) {
OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
return 0;
}
// Allocate and divide up the scratch space. |max_mem| fits in a size_t, which
// is no bigger than uint64_t, so none of these operations may overflow.
OPENSSL_COMPILE_ASSERT(UINT64_MAX >= ((size_t)-1), size_t_exceeds_u64);
size_t B_blocks = p * 2 * r;
size_t B_bytes = B_blocks * sizeof(block_t);
size_t T_blocks = 2 * r;
size_t V_blocks = N * 2 * r;
block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t));
if (B == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
return 0;
}
int ret = 0;
block_t *T = B + B_blocks;
block_t *V = T + T_blocks;
if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1,
EVP_sha256(), B_bytes, (uint8_t *)B)) {
goto err;
}
for (uint64_t i = 0; i < p; i++) {
scryptROMix(B + 2 * r * i, r, N, T, V);
}
if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1,
EVP_sha256(), key_len, out_key)) {
goto err;
}
ret = 1;
err:
OPENSSL_free(B);
return ret;
}