Nagram/TMessagesProj/jni/voip/webrtc/rtc_base/numerics/running_statistics.h
2020-09-30 16:48:47 +03:00

160 lines
4.9 KiB
C++

/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_
#define RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_
#include <algorithm>
#include <cmath>
#include <limits>
#include "absl/types/optional.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/math_utils.h"
namespace webrtc {
// tl;dr: Robust and efficient online computation of statistics,
// using Welford's method for variance. [1]
//
// This should be your go-to class if you ever need to compute
// min, max, mean, variance and standard deviation.
// If you need to get percentiles, please use webrtc::SamplesStatsCounter.
//
// Please note RemoveSample() won't affect min and max.
// If you want a full-fledged moving window over N last samples,
// please use webrtc::RollingAccumulator.
//
// The measures return absl::nullopt if no samples were fed (Size() == 0),
// otherwise the returned optional is guaranteed to contain a value.
//
// [1]
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
// The type T is a scalar which must be convertible to double.
// Rationale: we often need greater precision for measures
// than for the samples themselves.
template <typename T>
class RunningStatistics {
public:
// Update stats ////////////////////////////////////////////
// Add a value participating in the statistics in O(1) time.
void AddSample(T sample) {
max_ = std::max(max_, sample);
min_ = std::min(min_, sample);
++size_;
// Welford's incremental update.
const double delta = sample - mean_;
mean_ += delta / size_;
const double delta2 = sample - mean_;
cumul_ += delta * delta2;
}
// Remove a previously added value in O(1) time.
// Nb: This doesn't affect min or max.
// Calling RemoveSample when Size()==0 is incorrect.
void RemoveSample(T sample) {
RTC_DCHECK_GT(Size(), 0);
// In production, just saturate at 0.
if (Size() == 0) {
return;
}
// Since samples order doesn't matter, this is the
// exact reciprocal of Welford's incremental update.
--size_;
const double delta = sample - mean_;
mean_ -= delta / size_;
const double delta2 = sample - mean_;
cumul_ -= delta * delta2;
}
// Merge other stats, as if samples were added one by one, but in O(1).
void MergeStatistics(const RunningStatistics<T>& other) {
if (other.size_ == 0) {
return;
}
max_ = std::max(max_, other.max_);
min_ = std::min(min_, other.min_);
const int64_t new_size = size_ + other.size_;
const double new_mean =
(mean_ * size_ + other.mean_ * other.size_) / new_size;
// Each cumulant must be corrected.
// * from: sum((x_i - mean_)²)
// * to: sum((x_i - new_mean)²)
auto delta = [new_mean](const RunningStatistics<T>& stats) {
return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) +
stats.mean_ * stats.mean_);
};
cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other);
mean_ = new_mean;
size_ = new_size;
}
// Get Measures ////////////////////////////////////////////
// Returns number of samples involved via AddSample() or MergeStatistics(),
// minus number of times RemoveSample() was called.
int64_t Size() const { return size_; }
// Returns minimum among all seen samples, in O(1) time.
// This isn't affected by RemoveSample().
absl::optional<T> GetMin() const {
if (size_ == 0) {
return absl::nullopt;
}
return min_;
}
// Returns maximum among all seen samples, in O(1) time.
// This isn't affected by RemoveSample().
absl::optional<T> GetMax() const {
if (size_ == 0) {
return absl::nullopt;
}
return max_;
}
// Returns mean in O(1) time.
absl::optional<double> GetMean() const {
if (size_ == 0) {
return absl::nullopt;
}
return mean_;
}
// Returns unbiased sample variance in O(1) time.
absl::optional<double> GetVariance() const {
if (size_ == 0) {
return absl::nullopt;
}
return cumul_ / size_;
}
// Returns unbiased standard deviation in O(1) time.
absl::optional<double> GetStandardDeviation() const {
if (size_ == 0) {
return absl::nullopt;
}
return std::sqrt(*GetVariance());
}
private:
int64_t size_ = 0; // Samples seen.
T min_ = infinity_or_max<T>();
T max_ = minus_infinity_or_min<T>();
double mean_ = 0;
double cumul_ = 0; // Variance * size_, sometimes noted m2.
};
} // namespace webrtc
#endif // RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_