448 lines
13 KiB
C
448 lines
13 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 2000.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/rsa.h>
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/asn1t.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
static int parse_integer(CBS *cbs, BIGNUM **out) {
|
|
assert(*out == NULL);
|
|
*out = BN_new();
|
|
if (*out == NULL) {
|
|
return 0;
|
|
}
|
|
return BN_cbs2unsigned(cbs, *out);
|
|
}
|
|
|
|
static int marshal_integer(CBB *cbb, BIGNUM *bn) {
|
|
if (bn == NULL) {
|
|
/* An RSA object may be missing some components. */
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
|
return 0;
|
|
}
|
|
return BN_bn2cbb(cbb, bn);
|
|
}
|
|
|
|
RSA *RSA_parse_public_key(CBS *cbs) {
|
|
RSA *ret = RSA_new();
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
CBS child;
|
|
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
|
|
!parse_integer(&child, &ret->n) ||
|
|
!parse_integer(&child, &ret->e) ||
|
|
CBS_len(&child) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
RSA_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
RSA *RSA_public_key_from_bytes(const uint8_t *in, size_t in_len) {
|
|
CBS cbs;
|
|
CBS_init(&cbs, in, in_len);
|
|
RSA *ret = RSA_parse_public_key(&cbs);
|
|
if (ret == NULL || CBS_len(&cbs) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
RSA_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int RSA_marshal_public_key(CBB *cbb, const RSA *rsa) {
|
|
CBB child;
|
|
if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
|
|
!marshal_integer(&child, rsa->n) ||
|
|
!marshal_integer(&child, rsa->e) ||
|
|
!CBB_flush(cbb)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
|
|
const RSA *rsa) {
|
|
CBB cbb;
|
|
CBB_zero(&cbb);
|
|
if (!CBB_init(&cbb, 0) ||
|
|
!RSA_marshal_public_key(&cbb, rsa) ||
|
|
!CBB_finish(&cbb, out_bytes, out_len)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
CBB_cleanup(&cbb);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* kVersionTwoPrime and kVersionMulti are the supported values of the version
|
|
* field of an RSAPrivateKey structure (RFC 3447). */
|
|
static const uint64_t kVersionTwoPrime = 0;
|
|
static const uint64_t kVersionMulti = 1;
|
|
|
|
/* rsa_parse_additional_prime parses a DER-encoded OtherPrimeInfo from |cbs| and
|
|
* advances |cbs|. It returns a newly-allocated |RSA_additional_prime| on
|
|
* success or NULL on error. The |r| and |method_mod| fields of the result are
|
|
* set to NULL. */
|
|
static RSA_additional_prime *rsa_parse_additional_prime(CBS *cbs) {
|
|
RSA_additional_prime *ret = OPENSSL_malloc(sizeof(RSA_additional_prime));
|
|
if (ret == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
memset(ret, 0, sizeof(RSA_additional_prime));
|
|
|
|
CBS child;
|
|
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
|
|
!parse_integer(&child, &ret->prime) ||
|
|
!parse_integer(&child, &ret->exp) ||
|
|
!parse_integer(&child, &ret->coeff) ||
|
|
CBS_len(&child) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
RSA_additional_prime_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
RSA *RSA_parse_private_key(CBS *cbs) {
|
|
BN_CTX *ctx = NULL;
|
|
BIGNUM *product_of_primes_so_far = NULL;
|
|
RSA *ret = RSA_new();
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
CBS child;
|
|
uint64_t version;
|
|
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1_uint64(&child, &version) ||
|
|
(version != kVersionTwoPrime && version != kVersionMulti) ||
|
|
!parse_integer(&child, &ret->n) ||
|
|
!parse_integer(&child, &ret->e) ||
|
|
!parse_integer(&child, &ret->d) ||
|
|
!parse_integer(&child, &ret->p) ||
|
|
!parse_integer(&child, &ret->q) ||
|
|
!parse_integer(&child, &ret->dmp1) ||
|
|
!parse_integer(&child, &ret->dmq1) ||
|
|
!parse_integer(&child, &ret->iqmp)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_VERSION);
|
|
goto err;
|
|
}
|
|
|
|
/* Multi-prime RSA requires a newer version. */
|
|
if (version == kVersionMulti &&
|
|
CBS_peek_asn1_tag(&child, CBS_ASN1_SEQUENCE)) {
|
|
CBS other_prime_infos;
|
|
if (!CBS_get_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE) ||
|
|
CBS_len(&other_prime_infos) == 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
goto err;
|
|
}
|
|
ret->additional_primes = sk_RSA_additional_prime_new_null();
|
|
if (ret->additional_primes == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
ctx = BN_CTX_new();
|
|
product_of_primes_so_far = BN_new();
|
|
if (ctx == NULL ||
|
|
product_of_primes_so_far == NULL ||
|
|
!BN_mul(product_of_primes_so_far, ret->p, ret->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
while (CBS_len(&other_prime_infos) > 0) {
|
|
RSA_additional_prime *ap = rsa_parse_additional_prime(&other_prime_infos);
|
|
if (ap == NULL) {
|
|
goto err;
|
|
}
|
|
if (!sk_RSA_additional_prime_push(ret->additional_primes, ap)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
RSA_additional_prime_free(ap);
|
|
goto err;
|
|
}
|
|
ap->r = BN_dup(product_of_primes_so_far);
|
|
if (ap->r == NULL ||
|
|
!BN_mul(product_of_primes_so_far, product_of_primes_so_far,
|
|
ap->prime, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CBS_len(&child) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
goto err;
|
|
}
|
|
|
|
BN_CTX_free(ctx);
|
|
BN_free(product_of_primes_so_far);
|
|
return ret;
|
|
|
|
err:
|
|
BN_CTX_free(ctx);
|
|
BN_free(product_of_primes_so_far);
|
|
RSA_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
RSA *RSA_private_key_from_bytes(const uint8_t *in, size_t in_len) {
|
|
CBS cbs;
|
|
CBS_init(&cbs, in, in_len);
|
|
RSA *ret = RSA_parse_private_key(&cbs);
|
|
if (ret == NULL || CBS_len(&cbs) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
RSA_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int RSA_marshal_private_key(CBB *cbb, const RSA *rsa) {
|
|
const int is_multiprime =
|
|
sk_RSA_additional_prime_num(rsa->additional_primes) > 0;
|
|
|
|
CBB child;
|
|
if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
|
|
!CBB_add_asn1_uint64(&child,
|
|
is_multiprime ? kVersionMulti : kVersionTwoPrime) ||
|
|
!marshal_integer(&child, rsa->n) ||
|
|
!marshal_integer(&child, rsa->e) ||
|
|
!marshal_integer(&child, rsa->d) ||
|
|
!marshal_integer(&child, rsa->p) ||
|
|
!marshal_integer(&child, rsa->q) ||
|
|
!marshal_integer(&child, rsa->dmp1) ||
|
|
!marshal_integer(&child, rsa->dmq1) ||
|
|
!marshal_integer(&child, rsa->iqmp)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (is_multiprime) {
|
|
CBB other_prime_infos;
|
|
if (!CBB_add_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
size_t i;
|
|
for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) {
|
|
RSA_additional_prime *ap =
|
|
sk_RSA_additional_prime_value(rsa->additional_primes, i);
|
|
CBB other_prime_info;
|
|
if (!CBB_add_asn1(&other_prime_infos, &other_prime_info,
|
|
CBS_ASN1_SEQUENCE) ||
|
|
!marshal_integer(&other_prime_info, ap->prime) ||
|
|
!marshal_integer(&other_prime_info, ap->exp) ||
|
|
!marshal_integer(&other_prime_info, ap->coeff)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!CBB_flush(cbb)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int RSA_private_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
|
|
const RSA *rsa) {
|
|
CBB cbb;
|
|
CBB_zero(&cbb);
|
|
if (!CBB_init(&cbb, 0) ||
|
|
!RSA_marshal_private_key(&cbb, rsa) ||
|
|
!CBB_finish(&cbb, out_bytes, out_len)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
CBB_cleanup(&cbb);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len) {
|
|
if (len < 0) {
|
|
return NULL;
|
|
}
|
|
CBS cbs;
|
|
CBS_init(&cbs, *inp, (size_t)len);
|
|
RSA *ret = RSA_parse_public_key(&cbs);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
if (out != NULL) {
|
|
RSA_free(*out);
|
|
*out = ret;
|
|
}
|
|
*inp += (size_t)len - CBS_len(&cbs);
|
|
return ret;
|
|
}
|
|
|
|
int i2d_RSAPublicKey(const RSA *in, uint8_t **outp) {
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!RSA_public_key_to_bytes(&der, &der_len, in)) {
|
|
return -1;
|
|
}
|
|
if (der_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
OPENSSL_free(der);
|
|
return -1;
|
|
}
|
|
if (outp != NULL) {
|
|
if (*outp == NULL) {
|
|
*outp = der;
|
|
der = NULL;
|
|
} else {
|
|
memcpy(*outp, der, der_len);
|
|
*outp += der_len;
|
|
}
|
|
}
|
|
OPENSSL_free(der);
|
|
return (int)der_len;
|
|
}
|
|
|
|
RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len) {
|
|
if (len < 0) {
|
|
return NULL;
|
|
}
|
|
CBS cbs;
|
|
CBS_init(&cbs, *inp, (size_t)len);
|
|
RSA *ret = RSA_parse_private_key(&cbs);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
if (out != NULL) {
|
|
RSA_free(*out);
|
|
*out = ret;
|
|
}
|
|
*inp += (size_t)len - CBS_len(&cbs);
|
|
return ret;
|
|
}
|
|
|
|
int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp) {
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!RSA_private_key_to_bytes(&der, &der_len, in)) {
|
|
return -1;
|
|
}
|
|
if (der_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
OPENSSL_free(der);
|
|
return -1;
|
|
}
|
|
if (outp != NULL) {
|
|
if (*outp == NULL) {
|
|
*outp = der;
|
|
der = NULL;
|
|
} else {
|
|
memcpy(*outp, der, der_len);
|
|
*outp += der_len;
|
|
}
|
|
}
|
|
OPENSSL_free(der);
|
|
return (int)der_len;
|
|
}
|
|
|
|
ASN1_SEQUENCE(RSA_PSS_PARAMS) = {
|
|
ASN1_EXP_OPT(RSA_PSS_PARAMS, hashAlgorithm, X509_ALGOR,0),
|
|
ASN1_EXP_OPT(RSA_PSS_PARAMS, maskGenAlgorithm, X509_ALGOR,1),
|
|
ASN1_EXP_OPT(RSA_PSS_PARAMS, saltLength, ASN1_INTEGER,2),
|
|
ASN1_EXP_OPT(RSA_PSS_PARAMS, trailerField, ASN1_INTEGER,3),
|
|
} ASN1_SEQUENCE_END(RSA_PSS_PARAMS);
|
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(RSA_PSS_PARAMS);
|
|
|
|
RSA *RSAPublicKey_dup(const RSA *rsa) {
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!RSA_public_key_to_bytes(&der, &der_len, rsa)) {
|
|
return NULL;
|
|
}
|
|
RSA *ret = RSA_public_key_from_bytes(der, der_len);
|
|
OPENSSL_free(der);
|
|
return ret;
|
|
}
|
|
|
|
RSA *RSAPrivateKey_dup(const RSA *rsa) {
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!RSA_private_key_to_bytes(&der, &der_len, rsa)) {
|
|
return NULL;
|
|
}
|
|
RSA *ret = RSA_private_key_from_bytes(der, der_len);
|
|
OPENSSL_free(der);
|
|
return ret;
|
|
}
|