1016 lines
28 KiB
C++
1016 lines
28 KiB
C++
/*
|
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "rtc_base/thread.h"
|
|
|
|
#include "absl/strings/string_view.h"
|
|
#include "api/units/time_delta.h"
|
|
#include "rtc_base/socket_server.h"
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
#include <comdef.h>
|
|
#elif defined(WEBRTC_POSIX)
|
|
#include <time.h>
|
|
#else
|
|
#error "Either WEBRTC_WIN or WEBRTC_POSIX needs to be defined."
|
|
#endif
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
// Disable warning that we don't care about:
|
|
// warning C4722: destructor never returns, potential memory leak
|
|
#pragma warning(disable : 4722)
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <utility>
|
|
|
|
#include "absl/algorithm/container.h"
|
|
#include "absl/cleanup/cleanup.h"
|
|
#include "api/sequence_checker.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/deprecated/recursive_critical_section.h"
|
|
#include "rtc_base/event.h"
|
|
#include "rtc_base/internal/default_socket_server.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/null_socket_server.h"
|
|
#include "rtc_base/synchronization/mutex.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "rtc_base/trace_event.h"
|
|
|
|
#if defined(WEBRTC_MAC)
|
|
#include "rtc_base/system/cocoa_threading.h"
|
|
|
|
/*
|
|
* These are forward-declarations for methods that are part of the
|
|
* ObjC runtime. They are declared in the private header objc-internal.h.
|
|
* These calls are what clang inserts when using @autoreleasepool in ObjC,
|
|
* but here they are used directly in order to keep this file C++.
|
|
* https://clang.llvm.org/docs/AutomaticReferenceCounting.html#runtime-support
|
|
*/
|
|
extern "C" {
|
|
void* objc_autoreleasePoolPush(void);
|
|
void objc_autoreleasePoolPop(void* pool);
|
|
}
|
|
|
|
namespace {
|
|
class ScopedAutoReleasePool {
|
|
public:
|
|
ScopedAutoReleasePool() : pool_(objc_autoreleasePoolPush()) {}
|
|
~ScopedAutoReleasePool() { objc_autoreleasePoolPop(pool_); }
|
|
|
|
private:
|
|
void* const pool_;
|
|
};
|
|
} // namespace
|
|
#endif
|
|
|
|
namespace rtc {
|
|
namespace {
|
|
|
|
using ::webrtc::MutexLock;
|
|
using ::webrtc::TimeDelta;
|
|
|
|
class RTC_SCOPED_LOCKABLE MarkProcessingCritScope {
|
|
public:
|
|
MarkProcessingCritScope(const RecursiveCriticalSection* cs,
|
|
size_t* processing) RTC_EXCLUSIVE_LOCK_FUNCTION(cs)
|
|
: cs_(cs), processing_(processing) {
|
|
cs_->Enter();
|
|
*processing_ += 1;
|
|
}
|
|
|
|
~MarkProcessingCritScope() RTC_UNLOCK_FUNCTION() {
|
|
*processing_ -= 1;
|
|
cs_->Leave();
|
|
}
|
|
|
|
MarkProcessingCritScope(const MarkProcessingCritScope&) = delete;
|
|
MarkProcessingCritScope& operator=(const MarkProcessingCritScope&) = delete;
|
|
|
|
private:
|
|
const RecursiveCriticalSection* const cs_;
|
|
size_t* processing_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
ThreadManager* ThreadManager::Instance() {
|
|
static ThreadManager* const thread_manager = new ThreadManager();
|
|
return thread_manager;
|
|
}
|
|
|
|
ThreadManager::~ThreadManager() {
|
|
// By above RTC_DEFINE_STATIC_LOCAL.
|
|
RTC_DCHECK_NOTREACHED() << "ThreadManager should never be destructed.";
|
|
}
|
|
|
|
// static
|
|
void ThreadManager::Add(Thread* message_queue) {
|
|
return Instance()->AddInternal(message_queue);
|
|
}
|
|
void ThreadManager::AddInternal(Thread* message_queue) {
|
|
CritScope cs(&crit_);
|
|
// Prevent changes while the list of message queues is processed.
|
|
RTC_DCHECK_EQ(processing_, 0);
|
|
message_queues_.push_back(message_queue);
|
|
}
|
|
|
|
// static
|
|
void ThreadManager::Remove(Thread* message_queue) {
|
|
return Instance()->RemoveInternal(message_queue);
|
|
}
|
|
void ThreadManager::RemoveInternal(Thread* message_queue) {
|
|
{
|
|
CritScope cs(&crit_);
|
|
// Prevent changes while the list of message queues is processed.
|
|
RTC_DCHECK_EQ(processing_, 0);
|
|
std::vector<Thread*>::iterator iter;
|
|
iter = absl::c_find(message_queues_, message_queue);
|
|
if (iter != message_queues_.end()) {
|
|
message_queues_.erase(iter);
|
|
}
|
|
#if RTC_DCHECK_IS_ON
|
|
RemoveFromSendGraph(message_queue);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if RTC_DCHECK_IS_ON
|
|
void ThreadManager::RemoveFromSendGraph(Thread* thread) {
|
|
for (auto it = send_graph_.begin(); it != send_graph_.end();) {
|
|
if (it->first == thread) {
|
|
it = send_graph_.erase(it);
|
|
} else {
|
|
it->second.erase(thread);
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ThreadManager::RegisterSendAndCheckForCycles(Thread* source,
|
|
Thread* target) {
|
|
RTC_DCHECK(source);
|
|
RTC_DCHECK(target);
|
|
|
|
CritScope cs(&crit_);
|
|
std::deque<Thread*> all_targets({target});
|
|
// We check the pre-existing who-sends-to-who graph for any path from target
|
|
// to source. This loop is guaranteed to terminate because per the send graph
|
|
// invariant, there are no cycles in the graph.
|
|
for (size_t i = 0; i < all_targets.size(); i++) {
|
|
const auto& targets = send_graph_[all_targets[i]];
|
|
all_targets.insert(all_targets.end(), targets.begin(), targets.end());
|
|
}
|
|
RTC_CHECK_EQ(absl::c_count(all_targets, source), 0)
|
|
<< " send loop between " << source->name() << " and " << target->name();
|
|
|
|
// We may now insert source -> target without creating a cycle, since there
|
|
// was no path from target to source per the prior CHECK.
|
|
send_graph_[source].insert(target);
|
|
}
|
|
#endif
|
|
|
|
// static
|
|
void ThreadManager::ProcessAllMessageQueuesForTesting() {
|
|
return Instance()->ProcessAllMessageQueuesInternal();
|
|
}
|
|
|
|
void ThreadManager::ProcessAllMessageQueuesInternal() {
|
|
// This works by posting a delayed message at the current time and waiting
|
|
// for it to be dispatched on all queues, which will ensure that all messages
|
|
// that came before it were also dispatched.
|
|
std::atomic<int> queues_not_done(0);
|
|
|
|
{
|
|
MarkProcessingCritScope cs(&crit_, &processing_);
|
|
for (Thread* queue : message_queues_) {
|
|
if (!queue->IsProcessingMessagesForTesting()) {
|
|
// If the queue is not processing messages, it can
|
|
// be ignored. If we tried to post a message to it, it would be dropped
|
|
// or ignored.
|
|
continue;
|
|
}
|
|
queues_not_done.fetch_add(1);
|
|
// Whether the task is processed, or the thread is simply cleared,
|
|
// queues_not_done gets decremented.
|
|
absl::Cleanup sub = [&queues_not_done] { queues_not_done.fetch_sub(1); };
|
|
// Post delayed task instead of regular task to wait for all delayed tasks
|
|
// that are ready for processing.
|
|
queue->PostDelayedTask([sub = std::move(sub)] {}, TimeDelta::Zero());
|
|
}
|
|
}
|
|
|
|
rtc::Thread* current = rtc::Thread::Current();
|
|
// Note: One of the message queues may have been on this thread, which is
|
|
// why we can't synchronously wait for queues_not_done to go to 0; we need
|
|
// to process messages as well.
|
|
while (queues_not_done.load() > 0) {
|
|
if (current) {
|
|
current->ProcessMessages(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// static
|
|
Thread* Thread::Current() {
|
|
ThreadManager* manager = ThreadManager::Instance();
|
|
Thread* thread = manager->CurrentThread();
|
|
|
|
return thread;
|
|
}
|
|
|
|
#if defined(WEBRTC_POSIX)
|
|
ThreadManager::ThreadManager() {
|
|
#if defined(WEBRTC_MAC)
|
|
InitCocoaMultiThreading();
|
|
#endif
|
|
pthread_key_create(&key_, nullptr);
|
|
}
|
|
|
|
Thread* ThreadManager::CurrentThread() {
|
|
return static_cast<Thread*>(pthread_getspecific(key_));
|
|
}
|
|
|
|
void ThreadManager::SetCurrentThreadInternal(Thread* thread) {
|
|
pthread_setspecific(key_, thread);
|
|
}
|
|
#endif
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
ThreadManager::ThreadManager() : key_(TlsAlloc()) {}
|
|
|
|
Thread* ThreadManager::CurrentThread() {
|
|
return static_cast<Thread*>(TlsGetValue(key_));
|
|
}
|
|
|
|
void ThreadManager::SetCurrentThreadInternal(Thread* thread) {
|
|
TlsSetValue(key_, thread);
|
|
}
|
|
#endif
|
|
|
|
void ThreadManager::SetCurrentThread(Thread* thread) {
|
|
#if RTC_DLOG_IS_ON
|
|
if (CurrentThread() && thread) {
|
|
RTC_DLOG(LS_ERROR) << "SetCurrentThread: Overwriting an existing value?";
|
|
}
|
|
#endif // RTC_DLOG_IS_ON
|
|
|
|
if (thread) {
|
|
thread->EnsureIsCurrentTaskQueue();
|
|
} else {
|
|
Thread* current = CurrentThread();
|
|
if (current) {
|
|
// The current thread is being cleared, e.g. as a result of
|
|
// UnwrapCurrent() being called or when a thread is being stopped
|
|
// (see PreRun()). This signals that the Thread instance is being detached
|
|
// from the thread, which also means that TaskQueue::Current() must not
|
|
// return a pointer to the Thread instance.
|
|
current->ClearCurrentTaskQueue();
|
|
}
|
|
}
|
|
|
|
SetCurrentThreadInternal(thread);
|
|
}
|
|
|
|
void rtc::ThreadManager::ChangeCurrentThreadForTest(rtc::Thread* thread) {
|
|
SetCurrentThreadInternal(thread);
|
|
}
|
|
|
|
Thread* ThreadManager::WrapCurrentThread() {
|
|
Thread* result = CurrentThread();
|
|
if (nullptr == result) {
|
|
result = new Thread(CreateDefaultSocketServer());
|
|
result->WrapCurrentWithThreadManager(this, true);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void ThreadManager::UnwrapCurrentThread() {
|
|
Thread* t = CurrentThread();
|
|
if (t && !(t->IsOwned())) {
|
|
t->UnwrapCurrent();
|
|
delete t;
|
|
}
|
|
}
|
|
|
|
Thread::ScopedDisallowBlockingCalls::ScopedDisallowBlockingCalls()
|
|
: thread_(Thread::Current()),
|
|
previous_state_(thread_->SetAllowBlockingCalls(false)) {}
|
|
|
|
Thread::ScopedDisallowBlockingCalls::~ScopedDisallowBlockingCalls() {
|
|
RTC_DCHECK(thread_->IsCurrent());
|
|
thread_->SetAllowBlockingCalls(previous_state_);
|
|
}
|
|
|
|
#if RTC_DCHECK_IS_ON
|
|
Thread::ScopedCountBlockingCalls::ScopedCountBlockingCalls(
|
|
std::function<void(uint32_t, uint32_t)> callback)
|
|
: thread_(Thread::Current()),
|
|
base_blocking_call_count_(thread_->GetBlockingCallCount()),
|
|
base_could_be_blocking_call_count_(
|
|
thread_->GetCouldBeBlockingCallCount()),
|
|
result_callback_(std::move(callback)) {}
|
|
|
|
Thread::ScopedCountBlockingCalls::~ScopedCountBlockingCalls() {
|
|
if (GetTotalBlockedCallCount() >= min_blocking_calls_for_callback_) {
|
|
result_callback_(GetBlockingCallCount(), GetCouldBeBlockingCallCount());
|
|
}
|
|
}
|
|
|
|
uint32_t Thread::ScopedCountBlockingCalls::GetBlockingCallCount() const {
|
|
return thread_->GetBlockingCallCount() - base_blocking_call_count_;
|
|
}
|
|
|
|
uint32_t Thread::ScopedCountBlockingCalls::GetCouldBeBlockingCallCount() const {
|
|
return thread_->GetCouldBeBlockingCallCount() -
|
|
base_could_be_blocking_call_count_;
|
|
}
|
|
|
|
uint32_t Thread::ScopedCountBlockingCalls::GetTotalBlockedCallCount() const {
|
|
return GetBlockingCallCount() + GetCouldBeBlockingCallCount();
|
|
}
|
|
#endif
|
|
|
|
Thread::Thread(SocketServer* ss) : Thread(ss, /*do_init=*/true) {}
|
|
|
|
Thread::Thread(std::unique_ptr<SocketServer> ss)
|
|
: Thread(std::move(ss), /*do_init=*/true) {}
|
|
|
|
Thread::Thread(SocketServer* ss, bool do_init)
|
|
: delayed_next_num_(0),
|
|
fInitialized_(false),
|
|
fDestroyed_(false),
|
|
stop_(0),
|
|
ss_(ss) {
|
|
RTC_DCHECK(ss);
|
|
ss_->SetMessageQueue(this);
|
|
SetName("Thread", this); // default name
|
|
if (do_init) {
|
|
DoInit();
|
|
}
|
|
}
|
|
|
|
Thread::Thread(std::unique_ptr<SocketServer> ss, bool do_init)
|
|
: Thread(ss.get(), do_init) {
|
|
own_ss_ = std::move(ss);
|
|
}
|
|
|
|
Thread::~Thread() {
|
|
Stop();
|
|
DoDestroy();
|
|
}
|
|
|
|
void Thread::DoInit() {
|
|
if (fInitialized_) {
|
|
return;
|
|
}
|
|
|
|
fInitialized_ = true;
|
|
ThreadManager::Add(this);
|
|
}
|
|
|
|
void Thread::DoDestroy() {
|
|
if (fDestroyed_) {
|
|
return;
|
|
}
|
|
|
|
fDestroyed_ = true;
|
|
// The signal is done from here to ensure
|
|
// that it always gets called when the queue
|
|
// is going away.
|
|
if (ss_) {
|
|
ss_->SetMessageQueue(nullptr);
|
|
}
|
|
ThreadManager::Remove(this);
|
|
// Clear.
|
|
messages_ = {};
|
|
delayed_messages_ = {};
|
|
}
|
|
|
|
SocketServer* Thread::socketserver() {
|
|
return ss_;
|
|
}
|
|
|
|
void Thread::WakeUpSocketServer() {
|
|
ss_->WakeUp();
|
|
}
|
|
|
|
void Thread::Quit() {
|
|
stop_.store(1, std::memory_order_release);
|
|
WakeUpSocketServer();
|
|
}
|
|
|
|
bool Thread::IsQuitting() {
|
|
return stop_.load(std::memory_order_acquire) != 0;
|
|
}
|
|
|
|
void Thread::Restart() {
|
|
stop_.store(0, std::memory_order_release);
|
|
}
|
|
|
|
absl::AnyInvocable<void() &&> Thread::Get(int cmsWait) {
|
|
// Get w/wait + timer scan / dispatch + socket / event multiplexer dispatch
|
|
|
|
int64_t cmsTotal = cmsWait;
|
|
int64_t cmsElapsed = 0;
|
|
int64_t msStart = TimeMillis();
|
|
int64_t msCurrent = msStart;
|
|
while (true) {
|
|
// Check for posted events
|
|
int64_t cmsDelayNext = kForever;
|
|
{
|
|
// All queue operations need to be locked, but nothing else in this loop
|
|
// can happen while holding the `mutex_`.
|
|
MutexLock lock(&mutex_);
|
|
// Check for delayed messages that have been triggered and calculate the
|
|
// next trigger time.
|
|
while (!delayed_messages_.empty()) {
|
|
if (msCurrent < delayed_messages_.top().run_time_ms) {
|
|
cmsDelayNext =
|
|
TimeDiff(delayed_messages_.top().run_time_ms, msCurrent);
|
|
break;
|
|
}
|
|
messages_.push(std::move(delayed_messages_.top().functor));
|
|
delayed_messages_.pop();
|
|
}
|
|
// Pull a message off the message queue, if available.
|
|
if (!messages_.empty()) {
|
|
absl::AnyInvocable<void()&&> task = std::move(messages_.front());
|
|
messages_.pop();
|
|
return task;
|
|
}
|
|
}
|
|
|
|
if (IsQuitting())
|
|
break;
|
|
|
|
// Which is shorter, the delay wait or the asked wait?
|
|
|
|
int64_t cmsNext;
|
|
if (cmsWait == kForever) {
|
|
cmsNext = cmsDelayNext;
|
|
} else {
|
|
cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
|
|
if ((cmsDelayNext != kForever) && (cmsDelayNext < cmsNext))
|
|
cmsNext = cmsDelayNext;
|
|
}
|
|
|
|
{
|
|
// Wait and multiplex in the meantime
|
|
if (!ss_->Wait(cmsNext == kForever ? SocketServer::kForever
|
|
: webrtc::TimeDelta::Millis(cmsNext),
|
|
/*process_io=*/true))
|
|
return nullptr;
|
|
}
|
|
|
|
// If the specified timeout expired, return
|
|
|
|
msCurrent = TimeMillis();
|
|
cmsElapsed = TimeDiff(msCurrent, msStart);
|
|
if (cmsWait != kForever) {
|
|
if (cmsElapsed >= cmsWait)
|
|
return nullptr;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void Thread::PostTask(absl::AnyInvocable<void() &&> task) {
|
|
if (IsQuitting()) {
|
|
return;
|
|
}
|
|
|
|
// Keep thread safe
|
|
// Add the message to the end of the queue
|
|
// Signal for the multiplexer to return
|
|
|
|
{
|
|
MutexLock lock(&mutex_);
|
|
messages_.push(std::move(task));
|
|
}
|
|
WakeUpSocketServer();
|
|
}
|
|
|
|
void Thread::PostDelayedHighPrecisionTask(absl::AnyInvocable<void() &&> task,
|
|
webrtc::TimeDelta delay) {
|
|
if (IsQuitting()) {
|
|
return;
|
|
}
|
|
|
|
// Keep thread safe
|
|
// Add to the priority queue. Gets sorted soonest first.
|
|
// Signal for the multiplexer to return.
|
|
|
|
int64_t delay_ms = delay.RoundUpTo(webrtc::TimeDelta::Millis(1)).ms<int>();
|
|
int64_t run_time_ms = TimeAfter(delay_ms);
|
|
{
|
|
MutexLock lock(&mutex_);
|
|
delayed_messages_.push({.delay_ms = delay_ms,
|
|
.run_time_ms = run_time_ms,
|
|
.message_number = delayed_next_num_,
|
|
.functor = std::move(task)});
|
|
// If this message queue processes 1 message every millisecond for 50 days,
|
|
// we will wrap this number. Even then, only messages with identical times
|
|
// will be misordered, and then only briefly. This is probably ok.
|
|
++delayed_next_num_;
|
|
RTC_DCHECK_NE(0, delayed_next_num_);
|
|
}
|
|
WakeUpSocketServer();
|
|
}
|
|
|
|
int Thread::GetDelay() {
|
|
MutexLock lock(&mutex_);
|
|
|
|
if (!messages_.empty())
|
|
return 0;
|
|
|
|
if (!delayed_messages_.empty()) {
|
|
int delay = TimeUntil(delayed_messages_.top().run_time_ms);
|
|
if (delay < 0)
|
|
delay = 0;
|
|
return delay;
|
|
}
|
|
|
|
return kForever;
|
|
}
|
|
|
|
void Thread::Dispatch(absl::AnyInvocable<void() &&> task) {
|
|
TRACE_EVENT0("webrtc", "Thread::Dispatch");
|
|
RTC_DCHECK_RUN_ON(this);
|
|
int64_t start_time = TimeMillis();
|
|
std::move(task)();
|
|
int64_t end_time = TimeMillis();
|
|
int64_t diff = TimeDiff(end_time, start_time);
|
|
if (diff >= dispatch_warning_ms_) {
|
|
RTC_LOG(LS_INFO) << "Message to " << name() << " took " << diff
|
|
<< "ms to dispatch.";
|
|
// To avoid log spew, move the warning limit to only give warning
|
|
// for delays that are larger than the one observed.
|
|
dispatch_warning_ms_ = diff + 1;
|
|
}
|
|
}
|
|
|
|
bool Thread::IsCurrent() const {
|
|
return ThreadManager::Instance()->CurrentThread() == this;
|
|
}
|
|
|
|
std::unique_ptr<Thread> Thread::CreateWithSocketServer() {
|
|
return std::unique_ptr<Thread>(new Thread(CreateDefaultSocketServer()));
|
|
}
|
|
|
|
std::unique_ptr<Thread> Thread::Create() {
|
|
return std::unique_ptr<Thread>(
|
|
new Thread(std::unique_ptr<SocketServer>(new NullSocketServer())));
|
|
}
|
|
|
|
bool Thread::SleepMs(int milliseconds) {
|
|
AssertBlockingIsAllowedOnCurrentThread();
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
::Sleep(milliseconds);
|
|
return true;
|
|
#else
|
|
// POSIX has both a usleep() and a nanosleep(), but the former is deprecated,
|
|
// so we use nanosleep() even though it has greater precision than necessary.
|
|
struct timespec ts;
|
|
ts.tv_sec = milliseconds / 1000;
|
|
ts.tv_nsec = (milliseconds % 1000) * 1000000;
|
|
int ret = nanosleep(&ts, nullptr);
|
|
if (ret != 0) {
|
|
RTC_LOG_ERR(LS_WARNING) << "nanosleep() returning early";
|
|
return false;
|
|
}
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
bool Thread::SetName(absl::string_view name, const void* obj) {
|
|
RTC_DCHECK(!IsRunning());
|
|
|
|
name_ = std::string(name);
|
|
if (obj) {
|
|
// The %p specifier typically produce at most 16 hex digits, possibly with a
|
|
// 0x prefix. But format is implementation defined, so add some margin.
|
|
char buf[30];
|
|
snprintf(buf, sizeof(buf), " 0x%p", obj);
|
|
name_ += buf;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Thread::SetDispatchWarningMs(int deadline) {
|
|
if (!IsCurrent()) {
|
|
PostTask([this, deadline]() { SetDispatchWarningMs(deadline); });
|
|
return;
|
|
}
|
|
RTC_DCHECK_RUN_ON(this);
|
|
dispatch_warning_ms_ = deadline;
|
|
}
|
|
|
|
bool Thread::Start() {
|
|
RTC_DCHECK(!IsRunning());
|
|
|
|
if (IsRunning())
|
|
return false;
|
|
|
|
Restart(); // reset IsQuitting() if the thread is being restarted
|
|
|
|
// Make sure that ThreadManager is created on the main thread before
|
|
// we start a new thread.
|
|
ThreadManager::Instance();
|
|
|
|
owned_ = true;
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
thread_ = CreateThread(nullptr, 0, PreRun, this, 0, &thread_id_);
|
|
if (!thread_) {
|
|
return false;
|
|
}
|
|
#elif defined(WEBRTC_POSIX)
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
|
|
int error_code = pthread_create(&thread_, &attr, PreRun, this);
|
|
if (0 != error_code) {
|
|
RTC_LOG(LS_ERROR) << "Unable to create pthread, error " << error_code;
|
|
thread_ = 0;
|
|
return false;
|
|
}
|
|
RTC_DCHECK(thread_);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
bool Thread::WrapCurrent() {
|
|
return WrapCurrentWithThreadManager(ThreadManager::Instance(), true);
|
|
}
|
|
|
|
void Thread::UnwrapCurrent() {
|
|
// Clears the platform-specific thread-specific storage.
|
|
ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
#if defined(WEBRTC_WIN)
|
|
if (thread_ != nullptr) {
|
|
if (!CloseHandle(thread_)) {
|
|
RTC_LOG_GLE(LS_ERROR)
|
|
<< "When unwrapping thread, failed to close handle.";
|
|
}
|
|
thread_ = nullptr;
|
|
thread_id_ = 0;
|
|
}
|
|
#elif defined(WEBRTC_POSIX)
|
|
thread_ = 0;
|
|
#endif
|
|
}
|
|
|
|
void Thread::SafeWrapCurrent() {
|
|
WrapCurrentWithThreadManager(ThreadManager::Instance(), false);
|
|
}
|
|
|
|
void Thread::Join() {
|
|
if (!IsRunning())
|
|
return;
|
|
|
|
RTC_DCHECK(!IsCurrent());
|
|
if (Current() && !Current()->blocking_calls_allowed_) {
|
|
RTC_LOG(LS_WARNING) << "Waiting for the thread to join, "
|
|
"but blocking calls have been disallowed";
|
|
}
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
RTC_DCHECK(thread_ != nullptr);
|
|
WaitForSingleObject(thread_, INFINITE);
|
|
CloseHandle(thread_);
|
|
thread_ = nullptr;
|
|
thread_id_ = 0;
|
|
#elif defined(WEBRTC_POSIX)
|
|
pthread_join(thread_, nullptr);
|
|
thread_ = 0;
|
|
#endif
|
|
}
|
|
|
|
bool Thread::SetAllowBlockingCalls(bool allow) {
|
|
RTC_DCHECK(IsCurrent());
|
|
bool previous = blocking_calls_allowed_;
|
|
blocking_calls_allowed_ = allow;
|
|
return previous;
|
|
}
|
|
|
|
// static
|
|
void Thread::AssertBlockingIsAllowedOnCurrentThread() {
|
|
#if !defined(NDEBUG)
|
|
Thread* current = Thread::Current();
|
|
RTC_DCHECK(!current || current->blocking_calls_allowed_);
|
|
#endif
|
|
}
|
|
|
|
// static
|
|
#if defined(WEBRTC_WIN)
|
|
DWORD WINAPI Thread::PreRun(LPVOID pv) {
|
|
#else
|
|
void* Thread::PreRun(void* pv) {
|
|
#endif
|
|
Thread* thread = static_cast<Thread*>(pv);
|
|
ThreadManager::Instance()->SetCurrentThread(thread);
|
|
rtc::SetCurrentThreadName(thread->name_.c_str());
|
|
#if defined(WEBRTC_MAC)
|
|
ScopedAutoReleasePool pool;
|
|
#endif
|
|
thread->Run();
|
|
|
|
ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
#ifdef WEBRTC_WIN
|
|
return 0;
|
|
#else
|
|
return nullptr;
|
|
#endif
|
|
} // namespace rtc
|
|
|
|
void Thread::Run() {
|
|
ProcessMessages(kForever);
|
|
}
|
|
|
|
bool Thread::IsOwned() {
|
|
RTC_DCHECK(IsRunning());
|
|
return owned_;
|
|
}
|
|
|
|
void Thread::Stop() {
|
|
Thread::Quit();
|
|
Join();
|
|
}
|
|
|
|
void Thread::BlockingCall(rtc::FunctionView<void()> functor) {
|
|
TRACE_EVENT0("webrtc", "Thread::BlockingCall");
|
|
|
|
RTC_DCHECK(!IsQuitting());
|
|
if (IsQuitting())
|
|
return;
|
|
|
|
if (IsCurrent()) {
|
|
#if RTC_DCHECK_IS_ON
|
|
RTC_DCHECK(this->IsInvokeToThreadAllowed(this));
|
|
RTC_DCHECK_RUN_ON(this);
|
|
could_be_blocking_call_count_++;
|
|
#endif
|
|
functor();
|
|
return;
|
|
}
|
|
|
|
AssertBlockingIsAllowedOnCurrentThread();
|
|
|
|
Thread* current_thread = Thread::Current();
|
|
|
|
#if RTC_DCHECK_IS_ON
|
|
if (current_thread) {
|
|
RTC_DCHECK_RUN_ON(current_thread);
|
|
current_thread->blocking_call_count_++;
|
|
RTC_DCHECK(current_thread->IsInvokeToThreadAllowed(this));
|
|
ThreadManager::Instance()->RegisterSendAndCheckForCycles(current_thread,
|
|
this);
|
|
}
|
|
#endif
|
|
|
|
// Perhaps down the line we can get rid of this workaround and always require
|
|
// current_thread to be valid when BlockingCall() is called.
|
|
std::unique_ptr<rtc::Event> done_event;
|
|
if (!current_thread)
|
|
done_event.reset(new rtc::Event());
|
|
|
|
bool ready = false;
|
|
absl::Cleanup cleanup = [this, &ready, current_thread,
|
|
done = done_event.get()] {
|
|
if (current_thread) {
|
|
{
|
|
MutexLock lock(&mutex_);
|
|
ready = true;
|
|
}
|
|
current_thread->socketserver()->WakeUp();
|
|
} else {
|
|
done->Set();
|
|
}
|
|
};
|
|
PostTask([functor, cleanup = std::move(cleanup)] { functor(); });
|
|
if (current_thread) {
|
|
bool waited = false;
|
|
mutex_.Lock();
|
|
while (!ready) {
|
|
mutex_.Unlock();
|
|
current_thread->socketserver()->Wait(SocketServer::kForever, false);
|
|
waited = true;
|
|
mutex_.Lock();
|
|
}
|
|
mutex_.Unlock();
|
|
|
|
// Our Wait loop above may have consumed some WakeUp events for this
|
|
// Thread, that weren't relevant to this Send. Losing these WakeUps can
|
|
// cause problems for some SocketServers.
|
|
//
|
|
// Concrete example:
|
|
// Win32SocketServer on thread A calls Send on thread B. While processing
|
|
// the message, thread B Posts a message to A. We consume the wakeup for
|
|
// that Post while waiting for the Send to complete, which means that when
|
|
// we exit this loop, we need to issue another WakeUp, or else the Posted
|
|
// message won't be processed in a timely manner.
|
|
|
|
if (waited) {
|
|
current_thread->socketserver()->WakeUp();
|
|
}
|
|
} else {
|
|
done_event->Wait(rtc::Event::kForever);
|
|
}
|
|
}
|
|
|
|
// Called by the ThreadManager when being set as the current thread.
|
|
void Thread::EnsureIsCurrentTaskQueue() {
|
|
task_queue_registration_ =
|
|
std::make_unique<TaskQueueBase::CurrentTaskQueueSetter>(this);
|
|
}
|
|
|
|
// Called by the ThreadManager when being set as the current thread.
|
|
void Thread::ClearCurrentTaskQueue() {
|
|
task_queue_registration_.reset();
|
|
}
|
|
|
|
void Thread::AllowInvokesToThread(Thread* thread) {
|
|
#if (!defined(NDEBUG) || RTC_DCHECK_IS_ON)
|
|
if (!IsCurrent()) {
|
|
PostTask([thread, this]() { AllowInvokesToThread(thread); });
|
|
return;
|
|
}
|
|
RTC_DCHECK_RUN_ON(this);
|
|
allowed_threads_.push_back(thread);
|
|
invoke_policy_enabled_ = true;
|
|
#endif
|
|
}
|
|
|
|
void Thread::DisallowAllInvokes() {
|
|
#if (!defined(NDEBUG) || RTC_DCHECK_IS_ON)
|
|
if (!IsCurrent()) {
|
|
PostTask([this]() { DisallowAllInvokes(); });
|
|
return;
|
|
}
|
|
RTC_DCHECK_RUN_ON(this);
|
|
allowed_threads_.clear();
|
|
invoke_policy_enabled_ = true;
|
|
#endif
|
|
}
|
|
|
|
#if RTC_DCHECK_IS_ON
|
|
uint32_t Thread::GetBlockingCallCount() const {
|
|
RTC_DCHECK_RUN_ON(this);
|
|
return blocking_call_count_;
|
|
}
|
|
uint32_t Thread::GetCouldBeBlockingCallCount() const {
|
|
RTC_DCHECK_RUN_ON(this);
|
|
return could_be_blocking_call_count_;
|
|
}
|
|
#endif
|
|
|
|
// Returns true if no policies added or if there is at least one policy
|
|
// that permits invocation to `target` thread.
|
|
bool Thread::IsInvokeToThreadAllowed(rtc::Thread* target) {
|
|
#if (!defined(NDEBUG) || RTC_DCHECK_IS_ON)
|
|
RTC_DCHECK_RUN_ON(this);
|
|
if (!invoke_policy_enabled_) {
|
|
return true;
|
|
}
|
|
for (const auto* thread : allowed_threads_) {
|
|
if (thread == target) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
void Thread::Delete() {
|
|
Stop();
|
|
delete this;
|
|
}
|
|
|
|
void Thread::PostDelayedTask(absl::AnyInvocable<void() &&> task,
|
|
webrtc::TimeDelta delay) {
|
|
// This implementation does not support low precision yet.
|
|
PostDelayedHighPrecisionTask(std::move(task), delay);
|
|
}
|
|
|
|
bool Thread::IsProcessingMessagesForTesting() {
|
|
return (owned_ || IsCurrent()) && !IsQuitting();
|
|
}
|
|
|
|
bool Thread::ProcessMessages(int cmsLoop) {
|
|
// Using ProcessMessages with a custom clock for testing and a time greater
|
|
// than 0 doesn't work, since it's not guaranteed to advance the custom
|
|
// clock's time, and may get stuck in an infinite loop.
|
|
RTC_DCHECK(GetClockForTesting() == nullptr || cmsLoop == 0 ||
|
|
cmsLoop == kForever);
|
|
int64_t msEnd = (kForever == cmsLoop) ? 0 : TimeAfter(cmsLoop);
|
|
int cmsNext = cmsLoop;
|
|
|
|
while (true) {
|
|
#if defined(WEBRTC_MAC)
|
|
ScopedAutoReleasePool pool;
|
|
#endif
|
|
absl::AnyInvocable<void()&&> task = Get(cmsNext);
|
|
if (!task)
|
|
return !IsQuitting();
|
|
Dispatch(std::move(task));
|
|
|
|
if (cmsLoop != kForever) {
|
|
cmsNext = static_cast<int>(TimeUntil(msEnd));
|
|
if (cmsNext < 0)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Thread::WrapCurrentWithThreadManager(ThreadManager* thread_manager,
|
|
bool need_synchronize_access) {
|
|
RTC_DCHECK(!IsRunning());
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
if (need_synchronize_access) {
|
|
// We explicitly ask for no rights other than synchronization.
|
|
// This gives us the best chance of succeeding.
|
|
thread_ = OpenThread(SYNCHRONIZE, FALSE, GetCurrentThreadId());
|
|
if (!thread_) {
|
|
RTC_LOG_GLE(LS_ERROR) << "Unable to get handle to thread.";
|
|
return false;
|
|
}
|
|
thread_id_ = GetCurrentThreadId();
|
|
}
|
|
#elif defined(WEBRTC_POSIX)
|
|
thread_ = pthread_self();
|
|
#endif
|
|
owned_ = false;
|
|
thread_manager->SetCurrentThread(this);
|
|
return true;
|
|
}
|
|
|
|
bool Thread::IsRunning() {
|
|
#if defined(WEBRTC_WIN)
|
|
return thread_ != nullptr;
|
|
#elif defined(WEBRTC_POSIX)
|
|
return thread_ != 0;
|
|
#endif
|
|
}
|
|
|
|
AutoThread::AutoThread()
|
|
: Thread(CreateDefaultSocketServer(), /*do_init=*/false) {
|
|
if (!ThreadManager::Instance()->CurrentThread()) {
|
|
// DoInit registers with ThreadManager. Do that only if we intend to
|
|
// be rtc::Thread::Current(), otherwise ProcessAllMessageQueuesInternal will
|
|
// post a message to a queue that no running thread is serving.
|
|
DoInit();
|
|
ThreadManager::Instance()->SetCurrentThread(this);
|
|
}
|
|
}
|
|
|
|
AutoThread::~AutoThread() {
|
|
Stop();
|
|
DoDestroy();
|
|
if (ThreadManager::Instance()->CurrentThread() == this) {
|
|
ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
}
|
|
}
|
|
|
|
AutoSocketServerThread::AutoSocketServerThread(SocketServer* ss)
|
|
: Thread(ss, /*do_init=*/false) {
|
|
DoInit();
|
|
old_thread_ = ThreadManager::Instance()->CurrentThread();
|
|
// Temporarily set the current thread to nullptr so that we can keep checks
|
|
// around that catch unintentional pointer overwrites.
|
|
rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
rtc::ThreadManager::Instance()->SetCurrentThread(this);
|
|
if (old_thread_) {
|
|
ThreadManager::Remove(old_thread_);
|
|
}
|
|
}
|
|
|
|
AutoSocketServerThread::~AutoSocketServerThread() {
|
|
RTC_DCHECK(ThreadManager::Instance()->CurrentThread() == this);
|
|
// Stop and destroy the thread before clearing it as the current thread.
|
|
// Sometimes there are messages left in the Thread that will be
|
|
// destroyed by DoDestroy, and sometimes the destructors of the message and/or
|
|
// its contents rely on this thread still being set as the current thread.
|
|
Stop();
|
|
DoDestroy();
|
|
rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
rtc::ThreadManager::Instance()->SetCurrentThread(old_thread_);
|
|
if (old_thread_) {
|
|
ThreadManager::Add(old_thread_);
|
|
}
|
|
}
|
|
|
|
} // namespace rtc
|