860 lines
23 KiB
C
860 lines
23 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/rsa.h>
|
|
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/ex_data.h>
|
|
#include <openssl/md5.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/nid.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#include "../bn/internal.h"
|
|
#include "../delocate.h"
|
|
#include "../../internal.h"
|
|
#include "internal.h"
|
|
|
|
|
|
DEFINE_STATIC_EX_DATA_CLASS(g_rsa_ex_data_class);
|
|
|
|
RSA *RSA_new(void) { return RSA_new_method(NULL); }
|
|
|
|
RSA *RSA_new_method(const ENGINE *engine) {
|
|
RSA *rsa = OPENSSL_malloc(sizeof(RSA));
|
|
if (rsa == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memset(rsa, 0, sizeof(RSA));
|
|
|
|
if (engine) {
|
|
rsa->meth = ENGINE_get_RSA_method(engine);
|
|
}
|
|
|
|
if (rsa->meth == NULL) {
|
|
rsa->meth = (RSA_METHOD *) RSA_default_method();
|
|
}
|
|
METHOD_ref(rsa->meth);
|
|
|
|
rsa->references = 1;
|
|
rsa->flags = rsa->meth->flags;
|
|
CRYPTO_MUTEX_init(&rsa->lock);
|
|
CRYPTO_new_ex_data(&rsa->ex_data);
|
|
|
|
if (rsa->meth->init && !rsa->meth->init(rsa)) {
|
|
CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data);
|
|
CRYPTO_MUTEX_cleanup(&rsa->lock);
|
|
METHOD_unref(rsa->meth);
|
|
OPENSSL_free(rsa);
|
|
return NULL;
|
|
}
|
|
|
|
return rsa;
|
|
}
|
|
|
|
void RSA_free(RSA *rsa) {
|
|
unsigned u;
|
|
|
|
if (rsa == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) {
|
|
return;
|
|
}
|
|
|
|
if (rsa->meth->finish) {
|
|
rsa->meth->finish(rsa);
|
|
}
|
|
METHOD_unref(rsa->meth);
|
|
|
|
CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data);
|
|
|
|
BN_clear_free(rsa->n);
|
|
BN_clear_free(rsa->e);
|
|
BN_clear_free(rsa->d);
|
|
BN_clear_free(rsa->p);
|
|
BN_clear_free(rsa->q);
|
|
BN_clear_free(rsa->dmp1);
|
|
BN_clear_free(rsa->dmq1);
|
|
BN_clear_free(rsa->iqmp);
|
|
BN_MONT_CTX_free(rsa->mont_n);
|
|
BN_MONT_CTX_free(rsa->mont_p);
|
|
BN_MONT_CTX_free(rsa->mont_q);
|
|
for (u = 0; u < rsa->num_blindings; u++) {
|
|
BN_BLINDING_free(rsa->blindings[u]);
|
|
}
|
|
OPENSSL_free(rsa->blindings);
|
|
OPENSSL_free(rsa->blindings_inuse);
|
|
CRYPTO_MUTEX_cleanup(&rsa->lock);
|
|
OPENSSL_free(rsa);
|
|
}
|
|
|
|
int RSA_up_ref(RSA *rsa) {
|
|
CRYPTO_refcount_inc(&rsa->references);
|
|
return 1;
|
|
}
|
|
|
|
unsigned RSA_bits(const RSA *rsa) { return BN_num_bits(rsa->n); }
|
|
|
|
void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e,
|
|
const BIGNUM **out_d) {
|
|
if (out_n != NULL) {
|
|
*out_n = rsa->n;
|
|
}
|
|
if (out_e != NULL) {
|
|
*out_e = rsa->e;
|
|
}
|
|
if (out_d != NULL) {
|
|
*out_d = rsa->d;
|
|
}
|
|
}
|
|
|
|
void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p,
|
|
const BIGNUM **out_q) {
|
|
if (out_p != NULL) {
|
|
*out_p = rsa->p;
|
|
}
|
|
if (out_q != NULL) {
|
|
*out_q = rsa->q;
|
|
}
|
|
}
|
|
|
|
void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1,
|
|
const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) {
|
|
if (out_dmp1 != NULL) {
|
|
*out_dmp1 = rsa->dmp1;
|
|
}
|
|
if (out_dmq1 != NULL) {
|
|
*out_dmq1 = rsa->dmq1;
|
|
}
|
|
if (out_iqmp != NULL) {
|
|
*out_iqmp = rsa->iqmp;
|
|
}
|
|
}
|
|
|
|
int RSA_set0_key(RSA *rsa, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
|
|
if ((rsa->n == NULL && n == NULL) ||
|
|
(rsa->e == NULL && e == NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
if (n != NULL) {
|
|
BN_free(rsa->n);
|
|
rsa->n = n;
|
|
}
|
|
if (e != NULL) {
|
|
BN_free(rsa->e);
|
|
rsa->e = e;
|
|
}
|
|
if (d != NULL) {
|
|
BN_free(rsa->d);
|
|
rsa->d = d;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int RSA_set0_factors(RSA *rsa, BIGNUM *p, BIGNUM *q) {
|
|
if ((rsa->p == NULL && p == NULL) ||
|
|
(rsa->q == NULL && q == NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
if (p != NULL) {
|
|
BN_free(rsa->p);
|
|
rsa->p = p;
|
|
}
|
|
if (q != NULL) {
|
|
BN_free(rsa->q);
|
|
rsa->q = q;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int RSA_set0_crt_params(RSA *rsa, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) {
|
|
if ((rsa->dmp1 == NULL && dmp1 == NULL) ||
|
|
(rsa->dmq1 == NULL && dmq1 == NULL) ||
|
|
(rsa->iqmp == NULL && iqmp == NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
if (dmp1 != NULL) {
|
|
BN_free(rsa->dmp1);
|
|
rsa->dmp1 = dmp1;
|
|
}
|
|
if (dmq1 != NULL) {
|
|
BN_free(rsa->dmq1);
|
|
rsa->dmq1 = dmq1;
|
|
}
|
|
if (iqmp != NULL) {
|
|
BN_free(rsa->iqmp);
|
|
rsa->iqmp = iqmp;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
|
|
int padding) {
|
|
size_t out_len;
|
|
|
|
if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
|
|
return -1;
|
|
}
|
|
|
|
if (out_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return out_len;
|
|
}
|
|
|
|
int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
|
const uint8_t *in, size_t in_len, int padding) {
|
|
if (rsa->meth->sign_raw) {
|
|
return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
|
|
int padding) {
|
|
size_t out_len;
|
|
|
|
if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
|
|
return -1;
|
|
}
|
|
|
|
if (out_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return out_len;
|
|
}
|
|
|
|
int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
|
const uint8_t *in, size_t in_len, int padding) {
|
|
if (rsa->meth->decrypt) {
|
|
return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
|
|
int padding) {
|
|
size_t out_len;
|
|
|
|
if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
|
|
return -1;
|
|
}
|
|
|
|
if (out_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return out_len;
|
|
}
|
|
|
|
int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
|
|
int padding) {
|
|
size_t out_len;
|
|
|
|
if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
|
|
return -1;
|
|
}
|
|
|
|
if (out_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return out_len;
|
|
}
|
|
|
|
unsigned RSA_size(const RSA *rsa) {
|
|
if (rsa->meth->size) {
|
|
return rsa->meth->size(rsa);
|
|
}
|
|
|
|
return rsa_default_size(rsa);
|
|
}
|
|
|
|
int RSA_is_opaque(const RSA *rsa) {
|
|
return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE);
|
|
}
|
|
|
|
int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
|
|
CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) {
|
|
int index;
|
|
if (!CRYPTO_get_ex_new_index(g_rsa_ex_data_class_bss_get(), &index, argl,
|
|
argp, free_func)) {
|
|
return -1;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
int RSA_set_ex_data(RSA *rsa, int idx, void *arg) {
|
|
return CRYPTO_set_ex_data(&rsa->ex_data, idx, arg);
|
|
}
|
|
|
|
void *RSA_get_ex_data(const RSA *rsa, int idx) {
|
|
return CRYPTO_get_ex_data(&rsa->ex_data, idx);
|
|
}
|
|
|
|
// SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's
|
|
// the length of an MD5 and SHA1 hash.
|
|
static const unsigned SSL_SIG_LENGTH = 36;
|
|
|
|
// pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is
|
|
// to be signed with PKCS#1.
|
|
struct pkcs1_sig_prefix {
|
|
// nid identifies the hash function.
|
|
int nid;
|
|
// hash_len is the expected length of the hash function.
|
|
uint8_t hash_len;
|
|
// len is the number of bytes of |bytes| which are valid.
|
|
uint8_t len;
|
|
// bytes contains the DER bytes.
|
|
uint8_t bytes[19];
|
|
};
|
|
|
|
// kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with
|
|
// different hash functions.
|
|
static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = {
|
|
{
|
|
NID_md5,
|
|
MD5_DIGEST_LENGTH,
|
|
18,
|
|
{0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
|
|
0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
|
|
},
|
|
{
|
|
NID_sha1,
|
|
SHA_DIGEST_LENGTH,
|
|
15,
|
|
{0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
|
|
0x00, 0x04, 0x14},
|
|
},
|
|
{
|
|
NID_sha224,
|
|
SHA224_DIGEST_LENGTH,
|
|
19,
|
|
{0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
|
|
0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
|
|
},
|
|
{
|
|
NID_sha256,
|
|
SHA256_DIGEST_LENGTH,
|
|
19,
|
|
{0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
|
|
0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
|
|
},
|
|
{
|
|
NID_sha384,
|
|
SHA384_DIGEST_LENGTH,
|
|
19,
|
|
{0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
|
|
0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
|
|
},
|
|
{
|
|
NID_sha512,
|
|
SHA512_DIGEST_LENGTH,
|
|
19,
|
|
{0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
|
|
0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
|
|
},
|
|
{
|
|
NID_undef, 0, 0, {0},
|
|
},
|
|
};
|
|
|
|
int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len,
|
|
int *is_alloced, int hash_nid, const uint8_t *msg,
|
|
size_t msg_len) {
|
|
unsigned i;
|
|
|
|
if (hash_nid == NID_md5_sha1) {
|
|
// Special case: SSL signature, just check the length.
|
|
if (msg_len != SSL_SIG_LENGTH) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
*out_msg = (uint8_t*) msg;
|
|
*out_msg_len = SSL_SIG_LENGTH;
|
|
*is_alloced = 0;
|
|
return 1;
|
|
}
|
|
|
|
for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) {
|
|
const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i];
|
|
if (sig_prefix->nid != hash_nid) {
|
|
continue;
|
|
}
|
|
|
|
if (msg_len != sig_prefix->hash_len) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t* prefix = sig_prefix->bytes;
|
|
unsigned prefix_len = sig_prefix->len;
|
|
unsigned signed_msg_len;
|
|
uint8_t *signed_msg;
|
|
|
|
signed_msg_len = prefix_len + msg_len;
|
|
if (signed_msg_len < prefix_len) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG);
|
|
return 0;
|
|
}
|
|
|
|
signed_msg = OPENSSL_malloc(signed_msg_len);
|
|
if (!signed_msg) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
OPENSSL_memcpy(signed_msg, prefix, prefix_len);
|
|
OPENSSL_memcpy(signed_msg + prefix_len, msg, msg_len);
|
|
|
|
*out_msg = signed_msg;
|
|
*out_msg_len = signed_msg_len;
|
|
*is_alloced = 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out,
|
|
unsigned *out_len, RSA *rsa) {
|
|
const unsigned rsa_size = RSA_size(rsa);
|
|
int ret = 0;
|
|
uint8_t *signed_msg = NULL;
|
|
size_t signed_msg_len = 0;
|
|
int signed_msg_is_alloced = 0;
|
|
size_t size_t_out_len;
|
|
|
|
if (rsa->meth->sign) {
|
|
return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa);
|
|
}
|
|
|
|
if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len,
|
|
&signed_msg_is_alloced, hash_nid, in, in_len) ||
|
|
!RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg,
|
|
signed_msg_len, RSA_PKCS1_PADDING)) {
|
|
goto err;
|
|
}
|
|
|
|
*out_len = size_t_out_len;
|
|
ret = 1;
|
|
|
|
err:
|
|
if (signed_msg_is_alloced) {
|
|
OPENSSL_free(signed_msg);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
|
const uint8_t *in, size_t in_len, const EVP_MD *md,
|
|
const EVP_MD *mgf1_md, int salt_len) {
|
|
if (in_len != EVP_MD_size(md)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
size_t padded_len = RSA_size(rsa);
|
|
uint8_t *padded = OPENSSL_malloc(padded_len);
|
|
if (padded == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
int ret =
|
|
RSA_padding_add_PKCS1_PSS_mgf1(rsa, padded, in, md, mgf1_md, salt_len) &&
|
|
RSA_sign_raw(rsa, out_len, out, max_out, padded, padded_len,
|
|
RSA_NO_PADDING);
|
|
OPENSSL_free(padded);
|
|
return ret;
|
|
}
|
|
|
|
int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len,
|
|
const uint8_t *sig, size_t sig_len, RSA *rsa) {
|
|
if (rsa->n == NULL || rsa->e == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
|
return 0;
|
|
}
|
|
|
|
const size_t rsa_size = RSA_size(rsa);
|
|
uint8_t *buf = NULL;
|
|
int ret = 0;
|
|
uint8_t *signed_msg = NULL;
|
|
size_t signed_msg_len = 0, len;
|
|
int signed_msg_is_alloced = 0;
|
|
|
|
if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
buf = OPENSSL_malloc(rsa_size);
|
|
if (!buf) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len,
|
|
RSA_PKCS1_PADDING)) {
|
|
goto out;
|
|
}
|
|
|
|
if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len,
|
|
&signed_msg_is_alloced, hash_nid, msg, msg_len)) {
|
|
goto out;
|
|
}
|
|
|
|
// Check that no other information follows the hash value (FIPS 186-4 Section
|
|
// 5.5) and it matches the expected hash.
|
|
if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE);
|
|
goto out;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
out:
|
|
OPENSSL_free(buf);
|
|
if (signed_msg_is_alloced) {
|
|
OPENSSL_free(signed_msg);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *msg, size_t msg_len,
|
|
const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len,
|
|
const uint8_t *sig, size_t sig_len) {
|
|
if (msg_len != EVP_MD_size(md)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
size_t em_len = RSA_size(rsa);
|
|
uint8_t *em = OPENSSL_malloc(em_len);
|
|
if (em == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
int ret = 0;
|
|
if (!RSA_verify_raw(rsa, &em_len, em, em_len, sig, sig_len, RSA_NO_PADDING)) {
|
|
goto err;
|
|
}
|
|
|
|
if (em_len != RSA_size(rsa)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
ret = RSA_verify_PKCS1_PSS_mgf1(rsa, msg, md, mgf1_md, em, salt_len);
|
|
|
|
err:
|
|
OPENSSL_free(em);
|
|
return ret;
|
|
}
|
|
|
|
int RSA_check_key(const RSA *key) {
|
|
BIGNUM n, pm1, qm1, lcm, gcd, de, dmp1, dmq1, iqmp_times_q;
|
|
BN_CTX *ctx;
|
|
int ok = 0, has_crt_values;
|
|
|
|
if (RSA_is_opaque(key)) {
|
|
// Opaque keys can't be checked.
|
|
return 1;
|
|
}
|
|
|
|
if ((key->p != NULL) != (key->q != NULL)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN);
|
|
return 0;
|
|
}
|
|
|
|
if (!key->n || !key->e) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
|
return 0;
|
|
}
|
|
|
|
if (!key->d || !key->p) {
|
|
// For a public key, or without p and q, there's nothing that can be
|
|
// checked.
|
|
return 1;
|
|
}
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
BN_init(&n);
|
|
BN_init(&pm1);
|
|
BN_init(&qm1);
|
|
BN_init(&lcm);
|
|
BN_init(&gcd);
|
|
BN_init(&de);
|
|
BN_init(&dmp1);
|
|
BN_init(&dmq1);
|
|
BN_init(&iqmp_times_q);
|
|
|
|
if (!BN_mul(&n, key->p, key->q, ctx) ||
|
|
// lcm = lcm(p, q)
|
|
!BN_sub(&pm1, key->p, BN_value_one()) ||
|
|
!BN_sub(&qm1, key->q, BN_value_one()) ||
|
|
!BN_mul(&lcm, &pm1, &qm1, ctx) ||
|
|
!BN_gcd(&gcd, &pm1, &qm1, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
|
goto out;
|
|
}
|
|
|
|
if (!BN_div(&lcm, NULL, &lcm, &gcd, ctx) ||
|
|
!BN_gcd(&gcd, &pm1, &qm1, ctx) ||
|
|
// de = d*e mod lcm(p, q).
|
|
!BN_mod_mul(&de, key->d, key->e, &lcm, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
|
goto out;
|
|
}
|
|
|
|
if (BN_cmp(&n, key->n) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q);
|
|
goto out;
|
|
}
|
|
|
|
if (!BN_is_one(&de)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1);
|
|
goto out;
|
|
}
|
|
|
|
has_crt_values = key->dmp1 != NULL;
|
|
if (has_crt_values != (key->dmq1 != NULL) ||
|
|
has_crt_values != (key->iqmp != NULL)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES);
|
|
goto out;
|
|
}
|
|
|
|
if (has_crt_values) {
|
|
if (// dmp1 = d mod (p-1)
|
|
!BN_mod(&dmp1, key->d, &pm1, ctx) ||
|
|
// dmq1 = d mod (q-1)
|
|
!BN_mod(&dmq1, key->d, &qm1, ctx) ||
|
|
// iqmp = q^-1 mod p
|
|
!BN_mod_mul(&iqmp_times_q, key->iqmp, key->q, key->p, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
|
goto out;
|
|
}
|
|
|
|
if (BN_cmp(&dmp1, key->dmp1) != 0 ||
|
|
BN_cmp(&dmq1, key->dmq1) != 0 ||
|
|
BN_cmp(key->iqmp, key->p) >= 0 ||
|
|
!BN_is_one(&iqmp_times_q)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ok = 1;
|
|
|
|
out:
|
|
BN_free(&n);
|
|
BN_free(&pm1);
|
|
BN_free(&qm1);
|
|
BN_free(&lcm);
|
|
BN_free(&gcd);
|
|
BN_free(&de);
|
|
BN_free(&dmp1);
|
|
BN_free(&dmq1);
|
|
BN_free(&iqmp_times_q);
|
|
BN_CTX_free(ctx);
|
|
|
|
return ok;
|
|
}
|
|
|
|
|
|
// This is the product of the 132 smallest odd primes, from 3 to 751.
|
|
static const BN_ULONG kSmallFactorsLimbs[] = {
|
|
TOBN(0xc4309333, 0x3ef4e3e1), TOBN(0x71161eb6, 0xcd2d655f),
|
|
TOBN(0x95e2238c, 0x0bf94862), TOBN(0x3eb233d3, 0x24f7912b),
|
|
TOBN(0x6b55514b, 0xbf26c483), TOBN(0x0a84d817, 0x5a144871),
|
|
TOBN(0x77d12fee, 0x9b82210a), TOBN(0xdb5b93c2, 0x97f050b3),
|
|
TOBN(0x4acad6b9, 0x4d6c026b), TOBN(0xeb7751f3, 0x54aec893),
|
|
TOBN(0xdba53368, 0x36bc85c4), TOBN(0xd85a1b28, 0x7f5ec78e),
|
|
TOBN(0x2eb072d8, 0x6b322244), TOBN(0xbba51112, 0x5e2b3aea),
|
|
TOBN(0x36ed1a6c, 0x0e2486bf), TOBN(0x5f270460, 0xec0c5727),
|
|
0x000017b1
|
|
};
|
|
|
|
DEFINE_LOCAL_DATA(BIGNUM, g_small_factors) {
|
|
out->d = (BN_ULONG *) kSmallFactorsLimbs;
|
|
out->top = OPENSSL_ARRAY_SIZE(kSmallFactorsLimbs);
|
|
out->dmax = out->top;
|
|
out->neg = 0;
|
|
out->flags = BN_FLG_STATIC_DATA;
|
|
}
|
|
|
|
int RSA_check_fips(RSA *key) {
|
|
if (RSA_is_opaque(key)) {
|
|
// Opaque keys can't be checked.
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED);
|
|
return 0;
|
|
}
|
|
|
|
if (!RSA_check_key(key)) {
|
|
return 0;
|
|
}
|
|
|
|
BN_CTX *ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
BIGNUM small_gcd;
|
|
BN_init(&small_gcd);
|
|
|
|
int ret = 1;
|
|
|
|
// Perform partial public key validation of RSA keys (SP 800-89 5.3.3).
|
|
enum bn_primality_result_t primality_result;
|
|
if (BN_num_bits(key->e) <= 16 ||
|
|
BN_num_bits(key->e) > 256 ||
|
|
!BN_is_odd(key->n) ||
|
|
!BN_is_odd(key->e) ||
|
|
!BN_gcd(&small_gcd, key->n, g_small_factors(), ctx) ||
|
|
!BN_is_one(&small_gcd) ||
|
|
!BN_enhanced_miller_rabin_primality_test(&primality_result, key->n,
|
|
BN_prime_checks, ctx, NULL) ||
|
|
primality_result != bn_non_prime_power_composite) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED);
|
|
ret = 0;
|
|
}
|
|
|
|
BN_free(&small_gcd);
|
|
BN_CTX_free(ctx);
|
|
|
|
if (!ret || key->d == NULL || key->p == NULL) {
|
|
// On a failure or on only a public key, there's nothing else can be
|
|
// checked.
|
|
return ret;
|
|
}
|
|
|
|
// FIPS pairwise consistency test (FIPS 140-2 4.9.2). Per FIPS 140-2 IG,
|
|
// section 9.9, it is not known whether |rsa| will be used for signing or
|
|
// encryption, so either pair-wise consistency self-test is acceptable. We
|
|
// perform a signing test.
|
|
uint8_t data[32] = {0};
|
|
unsigned sig_len = RSA_size(key);
|
|
uint8_t *sig = OPENSSL_malloc(sig_len);
|
|
if (sig == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
if (!RSA_sign(NID_sha256, data, sizeof(data), sig, &sig_len, key)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
#if defined(BORINGSSL_FIPS_BREAK_RSA_PWCT)
|
|
data[0] = ~data[0];
|
|
#endif
|
|
if (!RSA_verify(NID_sha256, data, sizeof(data), sig, sig_len, key)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|
ret = 0;
|
|
}
|
|
|
|
cleanup:
|
|
OPENSSL_free(sig);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
|
|
size_t len) {
|
|
if (rsa->meth->private_transform) {
|
|
return rsa->meth->private_transform(rsa, out, in, len);
|
|
}
|
|
|
|
return rsa_default_private_transform(rsa, out, in, len);
|
|
}
|
|
|
|
int RSA_flags(const RSA *rsa) { return rsa->flags; }
|
|
|
|
int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) {
|
|
return 1;
|
|
}
|