320 lines
9.6 KiB
C
320 lines
9.6 KiB
C
// Copyright 2012 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// Utilities for building and looking up Huffman trees.
|
|
//
|
|
// Author: Urvang Joshi (urvang@google.com)
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "./huffman.h"
|
|
#include "../utils/utils.h"
|
|
#include "../webp/format_constants.h"
|
|
|
|
// Uncomment the following to use look-up table for ReverseBits()
|
|
// (might be faster on some platform)
|
|
// #define USE_LUT_REVERSE_BITS
|
|
|
|
// Huffman data read via DecodeImageStream is represented in two (red and green)
|
|
// bytes.
|
|
#define MAX_HTREE_GROUPS 0x10000
|
|
#define NON_EXISTENT_SYMBOL (-1)
|
|
|
|
static void TreeNodeInit(HuffmanTreeNode* const node) {
|
|
node->children_ = -1; // means: 'unassigned so far'
|
|
}
|
|
|
|
static int NodeIsEmpty(const HuffmanTreeNode* const node) {
|
|
return (node->children_ < 0);
|
|
}
|
|
|
|
static int IsFull(const HuffmanTree* const tree) {
|
|
return (tree->num_nodes_ == tree->max_nodes_);
|
|
}
|
|
|
|
static void AssignChildren(HuffmanTree* const tree,
|
|
HuffmanTreeNode* const node) {
|
|
HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
|
|
node->children_ = (int)(children - node);
|
|
assert(children - node == (int)(children - node));
|
|
tree->num_nodes_ += 2;
|
|
TreeNodeInit(children + 0);
|
|
TreeNodeInit(children + 1);
|
|
}
|
|
|
|
// A Huffman tree is a full binary tree; and in a full binary tree with L
|
|
// leaves, the total number of nodes N = 2 * L - 1.
|
|
static int HuffmanTreeMaxNodes(int num_leaves) {
|
|
return (2 * num_leaves - 1);
|
|
}
|
|
|
|
static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) {
|
|
assert(tree != NULL);
|
|
tree->root_ =
|
|
(HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_));
|
|
return (tree->root_ != NULL);
|
|
}
|
|
|
|
static int TreeInit(HuffmanTree* const tree, int num_leaves) {
|
|
assert(tree != NULL);
|
|
if (num_leaves == 0) return 0;
|
|
tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves);
|
|
assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table
|
|
if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0;
|
|
TreeNodeInit(tree->root_); // Initialize root.
|
|
tree->num_nodes_ = 1;
|
|
memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
|
|
memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
|
|
return 1;
|
|
}
|
|
|
|
void VP8LHuffmanTreeFree(HuffmanTree* const tree) {
|
|
if (tree != NULL) {
|
|
WebPSafeFree(tree->root_);
|
|
tree->root_ = NULL;
|
|
tree->max_nodes_ = 0;
|
|
tree->num_nodes_ = 0;
|
|
}
|
|
}
|
|
|
|
HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
|
|
HTreeGroup* const htree_groups =
|
|
(HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups));
|
|
assert(num_htree_groups <= MAX_HTREE_GROUPS);
|
|
if (htree_groups == NULL) {
|
|
return NULL;
|
|
}
|
|
return htree_groups;
|
|
}
|
|
|
|
void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) {
|
|
if (htree_groups != NULL) {
|
|
int i, j;
|
|
for (i = 0; i < num_htree_groups; ++i) {
|
|
HuffmanTree* const htrees = htree_groups[i].htrees_;
|
|
for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
|
|
VP8LHuffmanTreeFree(&htrees[j]);
|
|
}
|
|
}
|
|
WebPSafeFree(htree_groups);
|
|
}
|
|
}
|
|
|
|
int VP8LHuffmanCodeLengthsToCodes(
|
|
const int* const code_lengths, int code_lengths_size,
|
|
int* const huff_codes) {
|
|
int symbol;
|
|
int code_len;
|
|
int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
|
int curr_code;
|
|
int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
|
int max_code_length = 0;
|
|
|
|
assert(code_lengths != NULL);
|
|
assert(code_lengths_size > 0);
|
|
assert(huff_codes != NULL);
|
|
|
|
// Calculate max code length.
|
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
|
if (code_lengths[symbol] > max_code_length) {
|
|
max_code_length = code_lengths[symbol];
|
|
}
|
|
}
|
|
if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
|
|
|
|
// Calculate code length histogram.
|
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
|
++code_length_hist[code_lengths[symbol]];
|
|
}
|
|
code_length_hist[0] = 0;
|
|
|
|
// Calculate the initial values of 'next_codes' for each code length.
|
|
// next_codes[code_len] denotes the code to be assigned to the next symbol
|
|
// of code length 'code_len'.
|
|
curr_code = 0;
|
|
next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
|
|
for (code_len = 1; code_len <= max_code_length; ++code_len) {
|
|
curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
|
|
next_codes[code_len] = curr_code;
|
|
}
|
|
|
|
// Get symbols.
|
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
|
if (code_lengths[symbol] > 0) {
|
|
huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
|
|
} else {
|
|
huff_codes[symbol] = NON_EXISTENT_SYMBOL;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#ifndef USE_LUT_REVERSE_BITS
|
|
|
|
static int ReverseBitsShort(int bits, int num_bits) {
|
|
int retval = 0;
|
|
int i;
|
|
assert(num_bits <= 8); // Not a hard requirement, just for coherency.
|
|
for (i = 0; i < num_bits; ++i) {
|
|
retval <<= 1;
|
|
retval |= bits & 1;
|
|
bits >>= 1;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
#else
|
|
|
|
static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values.
|
|
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
|
|
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
|
|
};
|
|
|
|
static int ReverseBitsShort(int bits, int num_bits) {
|
|
const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
|
|
assert(num_bits <= 8);
|
|
return v >> (8 - num_bits);
|
|
}
|
|
|
|
#endif
|
|
|
|
static int TreeAddSymbol(HuffmanTree* const tree,
|
|
int symbol, int code, int code_length) {
|
|
int step = HUFF_LUT_BITS;
|
|
int base_code;
|
|
HuffmanTreeNode* node = tree->root_;
|
|
const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
|
|
assert(symbol == (int16_t)symbol);
|
|
if (code_length <= HUFF_LUT_BITS) {
|
|
int i;
|
|
base_code = ReverseBitsShort(code, code_length);
|
|
for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
|
|
const int idx = base_code | (i << code_length);
|
|
tree->lut_symbol_[idx] = (int16_t)symbol;
|
|
tree->lut_bits_[idx] = code_length;
|
|
}
|
|
} else {
|
|
base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
|
|
HUFF_LUT_BITS);
|
|
}
|
|
while (code_length-- > 0) {
|
|
if (node >= max_node) {
|
|
return 0;
|
|
}
|
|
if (NodeIsEmpty(node)) {
|
|
if (IsFull(tree)) return 0; // error: too many symbols.
|
|
AssignChildren(tree, node);
|
|
} else if (!HuffmanTreeNodeIsNotLeaf(node)) {
|
|
return 0; // leaf is already occupied.
|
|
}
|
|
node += node->children_ + ((code >> code_length) & 1);
|
|
if (--step == 0) {
|
|
tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
|
|
}
|
|
}
|
|
if (NodeIsEmpty(node)) {
|
|
node->children_ = 0; // turn newly created node into a leaf.
|
|
} else if (HuffmanTreeNodeIsNotLeaf(node)) {
|
|
return 0; // trying to assign a symbol to already used code.
|
|
}
|
|
node->symbol_ = symbol; // Add symbol in this node.
|
|
return 1;
|
|
}
|
|
|
|
int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree,
|
|
const int* const code_lengths,
|
|
int* const codes,
|
|
int code_lengths_size) {
|
|
int symbol;
|
|
int num_symbols = 0;
|
|
int root_symbol = 0;
|
|
|
|
assert(tree != NULL);
|
|
assert(code_lengths != NULL);
|
|
|
|
// Find out number of symbols and the root symbol.
|
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
|
if (code_lengths[symbol] > 0) {
|
|
// Note: code length = 0 indicates non-existent symbol.
|
|
++num_symbols;
|
|
root_symbol = symbol;
|
|
}
|
|
}
|
|
|
|
// Initialize the tree. Will fail for num_symbols = 0
|
|
if (!TreeInit(tree, num_symbols)) return 0;
|
|
|
|
// Build tree.
|
|
if (num_symbols == 1) { // Trivial case.
|
|
const int max_symbol = code_lengths_size;
|
|
if (root_symbol < 0 || root_symbol >= max_symbol) {
|
|
VP8LHuffmanTreeFree(tree);
|
|
return 0;
|
|
}
|
|
return TreeAddSymbol(tree, root_symbol, 0, 0);
|
|
} else { // Normal case.
|
|
int ok = 0;
|
|
memset(codes, 0, code_lengths_size * sizeof(*codes));
|
|
|
|
if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size,
|
|
codes)) {
|
|
goto End;
|
|
}
|
|
|
|
// Add symbols one-by-one.
|
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
|
if (code_lengths[symbol] > 0) {
|
|
if (!TreeAddSymbol(tree, symbol, codes[symbol],
|
|
code_lengths[symbol])) {
|
|
goto End;
|
|
}
|
|
}
|
|
}
|
|
ok = 1;
|
|
End:
|
|
ok = ok && IsFull(tree);
|
|
if (!ok) VP8LHuffmanTreeFree(tree);
|
|
return ok;
|
|
}
|
|
}
|
|
|
|
int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree,
|
|
const int* const code_lengths,
|
|
const int* const codes,
|
|
const int* const symbols, int max_symbol,
|
|
int num_symbols) {
|
|
int ok = 0;
|
|
int i;
|
|
assert(tree != NULL);
|
|
assert(code_lengths != NULL);
|
|
assert(codes != NULL);
|
|
assert(symbols != NULL);
|
|
|
|
// Initialize the tree. Will fail if num_symbols = 0.
|
|
if (!TreeInit(tree, num_symbols)) return 0;
|
|
|
|
// Add symbols one-by-one.
|
|
for (i = 0; i < num_symbols; ++i) {
|
|
if (codes[i] != NON_EXISTENT_SYMBOL) {
|
|
if (symbols[i] < 0 || symbols[i] >= max_symbol) {
|
|
goto End;
|
|
}
|
|
if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
|
|
goto End;
|
|
}
|
|
}
|
|
}
|
|
ok = 1;
|
|
End:
|
|
ok = ok && IsFull(tree);
|
|
if (!ok) VP8LHuffmanTreeFree(tree);
|
|
return ok;
|
|
}
|