Nagram/TMessagesProj/jni/voip/tgcalls/group/StreamingPart.cpp
2021-03-19 13:25:58 +03:00

540 lines
15 KiB
C++

#include "StreamingPart.h"
#include "rtc_base/logging.h"
#include "rtc_base/third_party/base64/base64.h"
extern "C" {
#include <libavutil/timestamp.h>
#include <libavformat/avformat.h>
#include <libavcodec/avcodec.h>
}
#include <string>
#include <set>
#include <map>
namespace tgcalls {
namespace {
static absl::optional<uint32_t> readInt32(std::string const &data, int &offset) {
if (offset + 4 > data.length()) {
return absl::nullopt;
}
int32_t value = 0;
memcpy(&value, data.data() + offset, 4);
offset += 4;
return value;
}
struct ChannelUpdate {
int frameIndex = 0;
int id = 0;
uint32_t ssrc = 0;
};
static std::vector<ChannelUpdate> parseChannelUpdates(std::string const &data, int &offset) {
std::vector<ChannelUpdate> result;
auto channels = readInt32(data, offset);
if (!channels) {
return {};
}
auto count = readInt32(data, offset);
if (!count) {
return {};
}
for (int i = 0; i < count.value(); i++) {
auto frameIndex = readInt32(data, offset);
if (!frameIndex) {
return {};
}
auto channelId = readInt32(data, offset);
if (!channelId) {
return {};
}
auto ssrc = readInt32(data, offset);
if (!ssrc) {
return {};
}
ChannelUpdate update;
update.frameIndex = frameIndex.value();
update.id = channelId.value();
update.ssrc = ssrc.value();
result.push_back(update);
}
return result;
}
class AVIOContextImpl {
public:
AVIOContextImpl(std::vector<uint8_t> &&fileData) :
_fileData(std::move(fileData)) {
_buffer.resize(4 * 1024);
_context = avio_alloc_context(_buffer.data(), (int)_buffer.size(), 0, this, &AVIOContextImpl::read, NULL, &AVIOContextImpl::seek);
}
~AVIOContextImpl() {
av_free(_context);
}
static int read(void *opaque, unsigned char *buffer, int bufferSize) {
AVIOContextImpl *instance = static_cast<AVIOContextImpl *>(opaque);
int bytesToRead = std::min(bufferSize, ((int)instance->_fileData.size()) - instance->_fileReadPosition);
if (bytesToRead < 0) {
bytesToRead = 0;
}
if (bytesToRead > 0) {
memcpy(buffer, instance->_fileData.data() + instance->_fileReadPosition, bytesToRead);
instance->_fileReadPosition += bytesToRead;
return bytesToRead;
} else {
return AVERROR_EOF;
}
}
static int64_t seek(void *opaque, int64_t offset, int whence) {
AVIOContextImpl *instance = static_cast<AVIOContextImpl *>(opaque);
if (whence == 0x10000) {
return (int64_t)instance->_fileData.size();
} else {
int64_t seekOffset = std::min(offset, (int64_t)instance->_fileData.size());
if (seekOffset < 0) {
seekOffset = 0;
}
instance->_fileReadPosition = (int)seekOffset;
return seekOffset;
}
}
AVIOContext *getContext() {
return _context;
}
private:
std::vector<uint8_t> _fileData;
int _fileReadPosition = 0;
std::vector<uint8_t> _buffer;
AVIOContext *_context = nullptr;
};
}
struct ReadPcmResult {
int numSamples = 0;
int numChannels = 0;
};
class StreamingPartInternal {
public:
StreamingPartInternal(std::vector<uint8_t> &&fileData) :
_avIoContext(std::move(fileData)) {
int ret = 0;
_frame = av_frame_alloc();
AVInputFormat *inputFormat = av_find_input_format("ogg");
if (!inputFormat) {
_didReadToEnd = true;
return;
}
_inputFormatContext = avformat_alloc_context();
if (!_inputFormatContext) {
_didReadToEnd = true;
return;
}
_inputFormatContext->pb = _avIoContext.getContext();
if ((ret = avformat_open_input(&_inputFormatContext, "", inputFormat, nullptr)) < 0) {
_didReadToEnd = true;
return;
}
if ((ret = avformat_find_stream_info(_inputFormatContext, nullptr)) < 0) {
_didReadToEnd = true;
avformat_close_input(&_inputFormatContext);
_inputFormatContext = nullptr;
return;
}
AVCodecParameters *audioCodecParameters = nullptr;
AVStream *audioStream = nullptr;
for (int i = 0; i < _inputFormatContext->nb_streams; i++) {
AVStream *inStream = _inputFormatContext->streams[i];
AVCodecParameters *inCodecpar = inStream->codecpar;
if (inCodecpar->codec_type != AVMEDIA_TYPE_AUDIO) {
continue;
}
audioCodecParameters = inCodecpar;
audioStream = inStream;
_durationInMilliseconds = (int)((inStream->duration + inStream->first_dts) * 1000 / 48000);
if (inStream->metadata) {
AVDictionaryEntry *entry = av_dict_get(inStream->metadata, "TG_META", nullptr, 0);
if (entry && entry->value) {
std::string result;
size_t data_used = 0;
std::string sourceBase64 = (const char *)entry->value;
rtc::Base64::Decode(sourceBase64, rtc::Base64::DO_LAX, &result, &data_used);
if (result.size() != 0) {
int offset = 0;
_channelUpdates = parseChannelUpdates(result, offset);
}
}
}
break;
}
if (audioCodecParameters && audioStream) {
AVCodec *codec = avcodec_find_decoder(audioCodecParameters->codec_id);
if (codec) {
_codecContext = avcodec_alloc_context3(codec);
ret = avcodec_parameters_to_context(_codecContext, audioCodecParameters);
if (ret < 0) {
_didReadToEnd = true;
avcodec_free_context(&_codecContext);
_codecContext = nullptr;
} else {
_codecContext->pkt_timebase = audioStream->time_base;
_channelCount = _codecContext->channels;
ret = avcodec_open2(_codecContext, codec, nullptr);
if (ret < 0) {
_didReadToEnd = true;
avcodec_free_context(&_codecContext);
_codecContext = nullptr;
}
}
}
}
}
~StreamingPartInternal() {
if (_frame) {
av_frame_unref(_frame);
}
if (_codecContext) {
avcodec_close(_codecContext);
avcodec_free_context(&_codecContext);
}
if (_inputFormatContext) {
avformat_close_input(&_inputFormatContext);
}
}
ReadPcmResult readPcm(std::vector<int16_t> &outPcm) {
int outPcmSampleOffset = 0;
ReadPcmResult result;
int readSamples = (int)outPcm.size() / _channelCount;
result.numChannels = _channelCount;
while (outPcmSampleOffset < readSamples) {
if (_pcmBufferSampleOffset >= _pcmBufferSampleSize) {
fillPcmBuffer();
if (_pcmBufferSampleOffset >= _pcmBufferSampleSize) {
break;
}
}
int readFromPcmBufferSamples = std::min(_pcmBufferSampleSize - _pcmBufferSampleOffset, readSamples - outPcmSampleOffset);
if (readFromPcmBufferSamples != 0) {
std::copy(_pcmBuffer.begin() + _pcmBufferSampleOffset * _channelCount, _pcmBuffer.begin() + _pcmBufferSampleOffset * _channelCount + readFromPcmBufferSamples * _channelCount, outPcm.begin() + outPcmSampleOffset * _channelCount);
_pcmBufferSampleOffset += readFromPcmBufferSamples;
outPcmSampleOffset += readFromPcmBufferSamples;
result.numSamples += readFromPcmBufferSamples;
}
}
return result;
}
int getDurationInMilliseconds() {
return _durationInMilliseconds;
}
int getChannelCount() {
return _channelCount;
}
std::vector<ChannelUpdate> const &getChannelUpdates() {
return _channelUpdates;
}
private:
void fillPcmBuffer() {
_pcmBufferSampleSize = 0;
_pcmBufferSampleOffset = 0;
if (_didReadToEnd) {
return;
}
if (!_inputFormatContext) {
_didReadToEnd = true;
return;
}
if (!_codecContext) {
_didReadToEnd = true;
return;
}
int ret = 0;
ret = av_read_frame(_inputFormatContext, &_packet);
if (ret < 0) {
_didReadToEnd = true;
return;
}
ret = avcodec_send_packet(_codecContext, &_packet);
if (ret < 0) {
_didReadToEnd = true;
return;
}
int bytesPerSample = av_get_bytes_per_sample(_codecContext->sample_fmt);
if (bytesPerSample != 2 && bytesPerSample != 4) {
_didReadToEnd = true;
return;
}
ret = avcodec_receive_frame(_codecContext, _frame);
if (ret != 0) {
_didReadToEnd = true;
return;
}
if (_frame->channels != _channelCount || _frame->channels > 8) {
_didReadToEnd = true;
return;
}
if (_pcmBuffer.size() < _frame->nb_samples * _frame->channels) {
_pcmBuffer.resize(_frame->nb_samples * _frame->channels);
}
switch (_codecContext->sample_fmt) {
case AV_SAMPLE_FMT_S16: {
memcpy(_pcmBuffer.data(), _frame->data[0], _frame->nb_samples * 2 * _frame->channels);
} break;
case AV_SAMPLE_FMT_S16P: {
int16_t *to = _pcmBuffer.data();
for (int sample = 0; sample < _frame->nb_samples; ++sample) {
for (int channel = 0; channel < _frame->channels; ++channel) {
int16_t *shortChannel = (int16_t*)_frame->data[channel];
*to++ = shortChannel[sample];
}
}
} break;
case AV_SAMPLE_FMT_FLT: {
float *floatData = (float *)&_frame->data[0];
for (int i = 0; i < _frame->nb_samples * _frame->channels; i++) {
_pcmBuffer[i] = (int16_t)(floatData[i] * INT16_MAX);
}
} break;
case AV_SAMPLE_FMT_FLTP: {
int16_t *to = _pcmBuffer.data();
for (int sample = 0; sample < _frame->nb_samples; ++sample) {
for (int channel = 0; channel < _frame->channels; ++channel) {
float *floatChannel = (float*)_frame->data[channel];
*to++ = (int16_t)(floatChannel[sample] * INT16_MAX);
}
}
} break;
default: {
//RTC_FATAL() << "Unexpected sample_fmt";
} break;
}
_pcmBufferSampleSize = _frame->nb_samples;
_pcmBufferSampleOffset = 0;
}
private:
AVIOContextImpl _avIoContext;
AVFormatContext *_inputFormatContext = nullptr;
AVPacket _packet;
AVCodecContext *_codecContext = nullptr;
AVFrame *_frame = nullptr;
bool _didReadToEnd = false;
int _durationInMilliseconds = 0;
int _channelCount = 0;
std::vector<ChannelUpdate> _channelUpdates;
std::vector<int16_t> _pcmBuffer;
int _pcmBufferSampleOffset = 0;
int _pcmBufferSampleSize = 0;
};
class StreamingPartState {
struct ChannelMapping {
uint32_t ssrc = 0;
int channelIndex = 0;
ChannelMapping(uint32_t ssrc_, int channelIndex_) :
ssrc(ssrc_), channelIndex(channelIndex_) {
}
};
public:
StreamingPartState(std::vector<uint8_t> &&data) :
_parsedPart(std::move(data)) {
if (_parsedPart.getChannelUpdates().size() == 0) {
_didReadToEnd = true;
return;
}
_remainingMilliseconds = _parsedPart.getDurationInMilliseconds();
_pcm10ms.resize(480 * _parsedPart.getChannelCount());
for (const auto &it : _parsedPart.getChannelUpdates()) {
_allSsrcs.insert(it.ssrc);
}
}
~StreamingPartState() {
}
int getRemainingMilliseconds() const {
return _remainingMilliseconds;
}
std::vector<StreamingPart::StreamingPartChannel> get10msPerChannel() {
if (_didReadToEnd) {
return {};
}
for (const auto &update : _parsedPart.getChannelUpdates()) {
if (update.frameIndex == _frameIndex) {
updateCurrentMapping(update.ssrc, update.id);
}
}
auto readResult = _parsedPart.readPcm(_pcm10ms);
if (readResult.numSamples <= 0) {
_didReadToEnd = true;
return {};
}
std::vector<StreamingPart::StreamingPartChannel> resultChannels;
for (const auto ssrc : _allSsrcs) {
StreamingPart::StreamingPartChannel emptyPart;
emptyPart.ssrc = ssrc;
resultChannels.push_back(emptyPart);
}
for (auto &channel : resultChannels) {
auto mappedChannelIndex = getCurrentMappedChannelIndex(channel.ssrc);
if (mappedChannelIndex) {
int sourceChannelIndex = mappedChannelIndex.value();
for (int j = 0; j < readResult.numSamples; j++) {
channel.pcmData.push_back(_pcm10ms[sourceChannelIndex + j * readResult.numChannels]);
}
} else {
for (int j = 0; j < readResult.numSamples; j++) {
channel.pcmData.push_back(0);
}
}
}
_remainingMilliseconds -= 10;
if (_remainingMilliseconds < 0) {
_remainingMilliseconds = 0;
}
_frameIndex++;
return resultChannels;
}
private:
absl::optional<int> getCurrentMappedChannelIndex(uint32_t ssrc) {
for (const auto &it : _currentChannelMapping) {
if (it.ssrc == ssrc) {
return it.channelIndex;
}
}
return absl::nullopt;
}
void updateCurrentMapping(uint32_t ssrc, int channelIndex) {
for (int i = (int)_currentChannelMapping.size() - 1; i >= 0; i--) {
const auto &entry = _currentChannelMapping[i];
if (entry.ssrc == ssrc && entry.channelIndex == channelIndex) {
return;
} else if (entry.ssrc == ssrc || entry.channelIndex == channelIndex) {
_currentChannelMapping.erase(_currentChannelMapping.begin() + i);
}
}
_currentChannelMapping.emplace_back(ssrc, channelIndex);
}
private:
StreamingPartInternal _parsedPart;
std::set<uint32_t> _allSsrcs;
std::vector<int16_t> _pcm10ms;
std::vector<ChannelMapping> _currentChannelMapping;
int _frameIndex = 0;
int _remainingMilliseconds = 0;
bool _didReadToEnd = false;
};
StreamingPart::StreamingPart(std::vector<uint8_t> &&data) {
if (!data.empty()) {
_state = new StreamingPartState(std::move(data));
}
}
StreamingPart::~StreamingPart() {
if (_state) {
delete _state;
}
}
int StreamingPart::getRemainingMilliseconds() const {
return _state ? _state->getRemainingMilliseconds() : 0;
}
std::vector<StreamingPart::StreamingPartChannel> StreamingPart::get10msPerChannel() {
return _state
? _state->get10msPerChannel()
: std::vector<StreamingPart::StreamingPartChannel>();
}
}