Nagram/TMessagesProj/jni/voip/webrtc/absl/debugging/internal/stacktrace_x86-inl.inc
2022-03-11 19:49:54 +03:00

370 lines
14 KiB
C++

// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Produce stack trace
#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
#include <ucontext.h> // for ucontext_t
#endif
#if !defined(_WIN32)
#include <unistd.h>
#endif
#include <cassert>
#include <cstdint>
#include <limits>
#include "absl/base/macros.h"
#include "absl/base/port.h"
#include "absl/debugging/internal/address_is_readable.h"
#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
#include "absl/debugging/stacktrace.h"
#include "absl/base/internal/raw_logging.h"
using absl::debugging_internal::AddressIsReadable;
#if defined(__linux__) && defined(__i386__)
// Count "push %reg" instructions in VDSO __kernel_vsyscall(),
// preceeding "syscall" or "sysenter".
// If __kernel_vsyscall uses frame pointer, answer 0.
//
// kMaxBytes tells how many instruction bytes of __kernel_vsyscall
// to analyze before giving up. Up to kMaxBytes+1 bytes of
// instructions could be accessed.
//
// Here are known __kernel_vsyscall instruction sequences:
//
// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
// Used on Intel.
// 0xffffe400 <__kernel_vsyscall+0>: push %ecx
// 0xffffe401 <__kernel_vsyscall+1>: push %edx
// 0xffffe402 <__kernel_vsyscall+2>: push %ebp
// 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp
// 0xffffe405 <__kernel_vsyscall+5>: sysenter
//
// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
// Used on AMD.
// 0xffffe400 <__kernel_vsyscall+0>: push %ebp
// 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp
// 0xffffe403 <__kernel_vsyscall+3>: syscall
//
// The sequence below isn't actually expected in Google fleet,
// here only for completeness. Remove this comment from OSS release.
// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
// 0xffffe400 <__kernel_vsyscall+0>: int $0x80
// 0xffffe401 <__kernel_vsyscall+1>: ret
//
static const int kMaxBytes = 10;
// We use assert()s instead of DCHECK()s -- this is too low level
// for DCHECK().
static int CountPushInstructions(const unsigned char *const addr) {
int result = 0;
for (int i = 0; i < kMaxBytes; ++i) {
if (addr[i] == 0x89) {
// "mov reg,reg"
if (addr[i + 1] == 0xE5) {
// Found "mov %esp,%ebp".
return 0;
}
++i; // Skip register encoding byte.
} else if (addr[i] == 0x0F &&
(addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
// Found "sysenter" or "syscall".
return result;
} else if ((addr[i] & 0xF0) == 0x50) {
// Found "push %reg".
++result;
} else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
// Found "int $0x80"
assert(result == 0);
return 0;
} else {
// Unexpected instruction.
assert(false && "unexpected instruction in __kernel_vsyscall");
return 0;
}
}
// Unexpected: didn't find SYSENTER or SYSCALL in
// [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
return 0;
}
#endif
// Assume stack frames larger than 100,000 bytes are bogus.
static const int kMaxFrameBytes = 100000;
// Returns the stack frame pointer from signal context, 0 if unknown.
// vuc is a ucontext_t *. We use void* to avoid the use
// of ucontext_t on non-POSIX systems.
static uintptr_t GetFP(const void *vuc) {
#if !defined(__linux__)
static_cast<void>(vuc); // Avoid an unused argument compiler warning.
#else
if (vuc != nullptr) {
auto *uc = reinterpret_cast<const ucontext_t *>(vuc);
#if defined(__i386__)
const auto bp = uc->uc_mcontext.gregs[REG_EBP];
const auto sp = uc->uc_mcontext.gregs[REG_ESP];
#elif defined(__x86_64__)
const auto bp = uc->uc_mcontext.gregs[REG_RBP];
const auto sp = uc->uc_mcontext.gregs[REG_RSP];
#else
const uintptr_t bp = 0;
const uintptr_t sp = 0;
#endif
// Sanity-check that the base pointer is valid. It's possible that some
// code in the process is compiled with --copt=-fomit-frame-pointer or
// --copt=-momit-leaf-frame-pointer.
//
// TODO(bcmills): -momit-leaf-frame-pointer is currently the default
// behavior when building with clang. Talk to the C++ toolchain team about
// fixing that.
if (bp >= sp && bp - sp <= kMaxFrameBytes) return bp;
// If bp isn't a plausible frame pointer, return the stack pointer instead.
// If we're lucky, it points to the start of a stack frame; otherwise, we'll
// get one frame of garbage in the stack trace and fail the sanity check on
// the next iteration.
return sp;
}
#endif
return 0;
}
// Given a pointer to a stack frame, locate and return the calling
// stackframe, or return null if no stackframe can be found. Perform sanity
// checks (the strictness of which is controlled by the boolean parameter
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
template <bool STRICT_UNWINDING, bool WITH_CONTEXT>
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
static void **NextStackFrame(void **old_fp, const void *uc,
size_t stack_low, size_t stack_high) {
void **new_fp = (void **)*old_fp;
#if defined(__linux__) && defined(__i386__)
if (WITH_CONTEXT && uc != nullptr) {
// How many "push %reg" instructions are there at __kernel_vsyscall?
// This is constant for a given kernel and processor, so compute
// it only once.
static int num_push_instructions = -1; // Sentinel: not computed yet.
// Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
// be there.
static const unsigned char *kernel_rt_sigreturn_address = nullptr;
static const unsigned char *kernel_vsyscall_address = nullptr;
if (num_push_instructions == -1) {
#ifdef ABSL_HAVE_VDSO_SUPPORT
absl::debugging_internal::VDSOSupport vdso;
if (vdso.IsPresent()) {
absl::debugging_internal::VDSOSupport::SymbolInfo
rt_sigreturn_symbol_info;
absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;
if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,
&rt_sigreturn_symbol_info) ||
!vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,
&vsyscall_symbol_info) ||
rt_sigreturn_symbol_info.address == nullptr ||
vsyscall_symbol_info.address == nullptr) {
// Unexpected: 32-bit VDSO is present, yet one of the expected
// symbols is missing or null.
assert(false && "VDSO is present, but doesn't have expected symbols");
num_push_instructions = 0;
} else {
kernel_rt_sigreturn_address =
reinterpret_cast<const unsigned char *>(
rt_sigreturn_symbol_info.address);
kernel_vsyscall_address =
reinterpret_cast<const unsigned char *>(
vsyscall_symbol_info.address);
num_push_instructions =
CountPushInstructions(kernel_vsyscall_address);
}
} else {
num_push_instructions = 0;
}
#else // ABSL_HAVE_VDSO_SUPPORT
num_push_instructions = 0;
#endif // ABSL_HAVE_VDSO_SUPPORT
}
if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&
old_fp[1] == kernel_rt_sigreturn_address) {
const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
// This kernel does not use frame pointer in its VDSO code,
// and so %ebp is not suitable for unwinding.
void **const reg_ebp =
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
const unsigned char *const reg_eip =
reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&
reg_eip - kernel_vsyscall_address < kMaxBytes) {
// We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
// Restore from 'ucv' instead.
void **const reg_esp =
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
// Check that alleged %esp is not null and is reasonably aligned.
if (reg_esp &&
((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
// Check that alleged %esp is actually readable. This is to prevent
// "double fault" in case we hit the first fault due to e.g. stack
// corruption.
void *const reg_esp2 = reg_esp[num_push_instructions - 1];
if (AddressIsReadable(reg_esp2)) {
// Alleged %esp is readable, use it for further unwinding.
new_fp = reinterpret_cast<void **>(reg_esp2);
}
}
}
}
}
#endif
const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);
const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);
// Check that the transition from frame pointer old_fp to frame
// pointer new_fp isn't clearly bogus. Skip the checks if new_fp
// matches the signal context, so that we don't skip out early when
// using an alternate signal stack.
//
// TODO(bcmills): The GetFP call should be completely unnecessary when
// ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's
// stack by this point), but it is empirically still needed (e.g. when the
// stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some
// frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what
// it's supposed to.
if (STRICT_UNWINDING &&
(!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {
// With the stack growing downwards, older stack frame must be
// at a greater address that the current one.
if (new_fp_u <= old_fp_u) return nullptr;
if (new_fp_u - old_fp_u > kMaxFrameBytes) return nullptr;
if (stack_low < old_fp_u && old_fp_u <= stack_high) {
// Old BP was in the expected stack region...
if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
// ... but new BP is outside of expected stack region.
// It is most likely bogus.
return nullptr;
}
} else {
// We may be here if we are executing in a co-routine with a
// separate stack. We can't do safety checks in this case.
}
} else {
if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below
// In the non-strict mode, allow discontiguous stack frames.
// (alternate-signal-stacks for example).
if (new_fp == old_fp) return nullptr;
}
if (new_fp_u & (sizeof(void *) - 1)) return nullptr;
#ifdef __i386__
// On 32-bit machines, the stack pointer can be very close to
// 0xffffffff, so we explicitly check for a pointer into the
// last two pages in the address space
if (new_fp_u >= 0xffffe000) return nullptr;
#endif
#if !defined(_WIN32)
if (!STRICT_UNWINDING) {
// Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test
// on AMD-based machines with VDSO-enabled kernels.
// Make an extra sanity check to insure new_fp is readable.
// Note: NextStackFrame<false>() is only called while the program
// is already on its last leg, so it's ok to be slow here.
if (!AddressIsReadable(new_fp)) {
return nullptr;
}
}
#endif
return new_fp;
}
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
ABSL_ATTRIBUTE_NOINLINE
static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count,
const void *ucp, int *min_dropped_frames) {
int n = 0;
void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));
size_t stack_low = getpagesize(); // Assume that the first page is not stack.
size_t stack_high = std::numeric_limits<size_t>::max() - sizeof(void *);
while (fp && n < max_depth) {
if (*(fp + 1) == reinterpret_cast<void *>(0)) {
// In 64-bit code, we often see a frame that
// points to itself and has a return address of 0.
break;
}
void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
fp, ucp, stack_low, stack_high);
if (skip_count > 0) {
skip_count--;
} else {
result[n] = *(fp + 1);
if (IS_STACK_FRAMES) {
if (next_fp > fp) {
sizes[n] = (uintptr_t)next_fp - (uintptr_t)fp;
} else {
// A frame-size of 0 is used to indicate unknown frame size.
sizes[n] = 0;
}
}
n++;
}
fp = next_fp;
}
if (min_dropped_frames != nullptr) {
// Implementation detail: we clamp the max of frames we are willing to
// count, so as not to spend too much time in the loop below.
const int kMaxUnwind = 1000;
int num_dropped_frames = 0;
for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) {
if (skip_count > 0) {
skip_count--;
} else {
num_dropped_frames++;
}
fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low,
stack_high);
}
*min_dropped_frames = num_dropped_frames;
}
return n;
}
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
bool StackTraceWorksForTest() {
return true;
}
} // namespace debugging_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_