438 lines
14 KiB
C++
438 lines
14 KiB
C++
/*
|
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#ifndef RTC_BASE_BUFFER_H_
|
|
#define RTC_BASE_BUFFER_H_
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "api/array_view.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/type_traits.h"
|
|
#include "rtc_base/zero_memory.h"
|
|
|
|
namespace rtc {
|
|
|
|
namespace internal {
|
|
|
|
// (Internal; please don't use outside this file.) Determines if elements of
|
|
// type U are compatible with a BufferT<T>. For most types, we just ignore
|
|
// top-level const and forbid top-level volatile and require T and U to be
|
|
// otherwise equal, but all byte-sized integers (notably char, int8_t, and
|
|
// uint8_t) are compatible with each other. (Note: We aim to get rid of this
|
|
// behavior, and treat all types the same.)
|
|
template <typename T, typename U>
|
|
struct BufferCompat {
|
|
static constexpr bool value =
|
|
!std::is_volatile<U>::value &&
|
|
((std::is_integral<T>::value && sizeof(T) == 1)
|
|
? (std::is_integral<U>::value && sizeof(U) == 1)
|
|
: (std::is_same<T, typename std::remove_const<U>::type>::value));
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// Basic buffer class, can be grown and shrunk dynamically.
|
|
// Unlike std::string/vector, does not initialize data when increasing size.
|
|
// If "ZeroOnFree" is true, any memory is explicitly cleared before releasing.
|
|
// The type alias "ZeroOnFreeBuffer" below should be used instead of setting
|
|
// "ZeroOnFree" in the template manually to "true".
|
|
template <typename T, bool ZeroOnFree = false>
|
|
class BufferT {
|
|
// We want T's destructor and default constructor to be trivial, i.e. perform
|
|
// no action, so that we don't have to touch the memory we allocate and
|
|
// deallocate. And we want T to be trivially copyable, so that we can copy T
|
|
// instances with std::memcpy. This is precisely the definition of a trivial
|
|
// type.
|
|
static_assert(std::is_trivial<T>::value, "T must be a trivial type.");
|
|
|
|
// This class relies heavily on being able to mutate its data.
|
|
static_assert(!std::is_const<T>::value, "T may not be const");
|
|
|
|
public:
|
|
using value_type = T;
|
|
using const_iterator = const T*;
|
|
|
|
// An empty BufferT.
|
|
BufferT() : size_(0), capacity_(0), data_(nullptr) {
|
|
RTC_DCHECK(IsConsistent());
|
|
}
|
|
|
|
// Disable copy construction and copy assignment, since copying a buffer is
|
|
// expensive enough that we want to force the user to be explicit about it.
|
|
BufferT(const BufferT&) = delete;
|
|
BufferT& operator=(const BufferT&) = delete;
|
|
|
|
BufferT(BufferT&& buf)
|
|
: size_(buf.size()),
|
|
capacity_(buf.capacity()),
|
|
data_(std::move(buf.data_)) {
|
|
RTC_DCHECK(IsConsistent());
|
|
buf.OnMovedFrom();
|
|
}
|
|
|
|
// Construct a buffer with the specified number of uninitialized elements.
|
|
explicit BufferT(size_t size) : BufferT(size, size) {}
|
|
|
|
BufferT(size_t size, size_t capacity)
|
|
: size_(size),
|
|
capacity_(std::max(size, capacity)),
|
|
data_(capacity_ > 0 ? new T[capacity_] : nullptr) {
|
|
RTC_DCHECK(IsConsistent());
|
|
}
|
|
|
|
// Construct a buffer and copy the specified number of elements into it.
|
|
template <typename U,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
BufferT(const U* data, size_t size) : BufferT(data, size, size) {}
|
|
|
|
template <typename U,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
BufferT(U* data, size_t size, size_t capacity) : BufferT(size, capacity) {
|
|
static_assert(sizeof(T) == sizeof(U), "");
|
|
std::memcpy(data_.get(), data, size * sizeof(U));
|
|
}
|
|
|
|
// Construct a buffer from the contents of an array.
|
|
template <typename U,
|
|
size_t N,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
BufferT(U (&array)[N]) : BufferT(array, N) {}
|
|
|
|
~BufferT() { MaybeZeroCompleteBuffer(); }
|
|
|
|
// Get a pointer to the data. Just .data() will give you a (const) T*, but if
|
|
// T is a byte-sized integer, you may also use .data<U>() for any other
|
|
// byte-sized integer U.
|
|
template <typename U = T,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
const U* data() const {
|
|
RTC_DCHECK(IsConsistent());
|
|
return reinterpret_cast<U*>(data_.get());
|
|
}
|
|
|
|
template <typename U = T,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
U* data() {
|
|
RTC_DCHECK(IsConsistent());
|
|
return reinterpret_cast<U*>(data_.get());
|
|
}
|
|
|
|
bool empty() const {
|
|
RTC_DCHECK(IsConsistent());
|
|
return size_ == 0;
|
|
}
|
|
|
|
size_t size() const {
|
|
RTC_DCHECK(IsConsistent());
|
|
return size_;
|
|
}
|
|
|
|
size_t capacity() const {
|
|
RTC_DCHECK(IsConsistent());
|
|
return capacity_;
|
|
}
|
|
|
|
BufferT& operator=(BufferT&& buf) {
|
|
RTC_DCHECK(buf.IsConsistent());
|
|
MaybeZeroCompleteBuffer();
|
|
size_ = buf.size_;
|
|
capacity_ = buf.capacity_;
|
|
using std::swap;
|
|
swap(data_, buf.data_);
|
|
buf.data_.reset();
|
|
buf.OnMovedFrom();
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const BufferT& buf) const {
|
|
RTC_DCHECK(IsConsistent());
|
|
if (size_ != buf.size_) {
|
|
return false;
|
|
}
|
|
if (std::is_integral<T>::value) {
|
|
// Optimization.
|
|
return std::memcmp(data_.get(), buf.data_.get(), size_ * sizeof(T)) == 0;
|
|
}
|
|
for (size_t i = 0; i < size_; ++i) {
|
|
if (data_[i] != buf.data_[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const BufferT& buf) const { return !(*this == buf); }
|
|
|
|
T& operator[](size_t index) {
|
|
RTC_DCHECK_LT(index, size_);
|
|
return data()[index];
|
|
}
|
|
|
|
T operator[](size_t index) const {
|
|
RTC_DCHECK_LT(index, size_);
|
|
return data()[index];
|
|
}
|
|
|
|
T* begin() { return data(); }
|
|
T* end() { return data() + size(); }
|
|
const T* begin() const { return data(); }
|
|
const T* end() const { return data() + size(); }
|
|
const T* cbegin() const { return data(); }
|
|
const T* cend() const { return data() + size(); }
|
|
|
|
// The SetData functions replace the contents of the buffer. They accept the
|
|
// same input types as the constructors.
|
|
template <typename U,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
void SetData(const U* data, size_t size) {
|
|
RTC_DCHECK(IsConsistent());
|
|
const size_t old_size = size_;
|
|
size_ = 0;
|
|
AppendData(data, size);
|
|
if (ZeroOnFree && size_ < old_size) {
|
|
ZeroTrailingData(old_size - size_);
|
|
}
|
|
}
|
|
|
|
template <typename U,
|
|
size_t N,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
void SetData(const U (&array)[N]) {
|
|
SetData(array, N);
|
|
}
|
|
|
|
template <typename W,
|
|
typename std::enable_if<
|
|
HasDataAndSize<const W, const T>::value>::type* = nullptr>
|
|
void SetData(const W& w) {
|
|
SetData(w.data(), w.size());
|
|
}
|
|
|
|
// Replaces the data in the buffer with at most `max_elements` of data, using
|
|
// the function `setter`, which should have the following signature:
|
|
//
|
|
// size_t setter(ArrayView<U> view)
|
|
//
|
|
// `setter` is given an appropriately typed ArrayView of length exactly
|
|
// `max_elements` that describes the area where it should write the data; it
|
|
// should return the number of elements actually written. (If it doesn't fill
|
|
// the whole ArrayView, it should leave the unused space at the end.)
|
|
template <typename U = T,
|
|
typename F,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
size_t SetData(size_t max_elements, F&& setter) {
|
|
RTC_DCHECK(IsConsistent());
|
|
const size_t old_size = size_;
|
|
size_ = 0;
|
|
const size_t written = AppendData<U>(max_elements, std::forward<F>(setter));
|
|
if (ZeroOnFree && size_ < old_size) {
|
|
ZeroTrailingData(old_size - size_);
|
|
}
|
|
return written;
|
|
}
|
|
|
|
// The AppendData functions add data to the end of the buffer. They accept
|
|
// the same input types as the constructors.
|
|
template <typename U,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
void AppendData(const U* data, size_t size) {
|
|
RTC_DCHECK(IsConsistent());
|
|
const size_t new_size = size_ + size;
|
|
EnsureCapacityWithHeadroom(new_size, true);
|
|
static_assert(sizeof(T) == sizeof(U), "");
|
|
std::memcpy(data_.get() + size_, data, size * sizeof(U));
|
|
size_ = new_size;
|
|
RTC_DCHECK(IsConsistent());
|
|
}
|
|
|
|
template <typename U,
|
|
size_t N,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
void AppendData(const U (&array)[N]) {
|
|
AppendData(array, N);
|
|
}
|
|
|
|
template <typename W,
|
|
typename std::enable_if<
|
|
HasDataAndSize<const W, const T>::value>::type* = nullptr>
|
|
void AppendData(const W& w) {
|
|
AppendData(w.data(), w.size());
|
|
}
|
|
|
|
template <typename U,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
void AppendData(const U& item) {
|
|
AppendData(&item, 1);
|
|
}
|
|
|
|
// Appends at most `max_elements` to the end of the buffer, using the function
|
|
// `setter`, which should have the following signature:
|
|
//
|
|
// size_t setter(ArrayView<U> view)
|
|
//
|
|
// `setter` is given an appropriately typed ArrayView of length exactly
|
|
// `max_elements` that describes the area where it should write the data; it
|
|
// should return the number of elements actually written. (If it doesn't fill
|
|
// the whole ArrayView, it should leave the unused space at the end.)
|
|
template <typename U = T,
|
|
typename F,
|
|
typename std::enable_if<
|
|
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
|
size_t AppendData(size_t max_elements, F&& setter) {
|
|
RTC_DCHECK(IsConsistent());
|
|
const size_t old_size = size_;
|
|
SetSize(old_size + max_elements);
|
|
U* base_ptr = data<U>() + old_size;
|
|
size_t written_elements = setter(rtc::ArrayView<U>(base_ptr, max_elements));
|
|
|
|
RTC_CHECK_LE(written_elements, max_elements);
|
|
size_ = old_size + written_elements;
|
|
RTC_DCHECK(IsConsistent());
|
|
return written_elements;
|
|
}
|
|
|
|
// Sets the size of the buffer. If the new size is smaller than the old, the
|
|
// buffer contents will be kept but truncated; if the new size is greater,
|
|
// the existing contents will be kept and the new space will be
|
|
// uninitialized.
|
|
void SetSize(size_t size) {
|
|
const size_t old_size = size_;
|
|
EnsureCapacityWithHeadroom(size, true);
|
|
size_ = size;
|
|
if (ZeroOnFree && size_ < old_size) {
|
|
ZeroTrailingData(old_size - size_);
|
|
}
|
|
}
|
|
|
|
// Ensure that the buffer size can be increased to at least capacity without
|
|
// further reallocation. (Of course, this operation might need to reallocate
|
|
// the buffer.)
|
|
void EnsureCapacity(size_t capacity) {
|
|
// Don't allocate extra headroom, since the user is asking for a specific
|
|
// capacity.
|
|
EnsureCapacityWithHeadroom(capacity, false);
|
|
}
|
|
|
|
// Resets the buffer to zero size without altering capacity. Works even if the
|
|
// buffer has been moved from.
|
|
void Clear() {
|
|
MaybeZeroCompleteBuffer();
|
|
size_ = 0;
|
|
RTC_DCHECK(IsConsistent());
|
|
}
|
|
|
|
// Swaps two buffers. Also works for buffers that have been moved from.
|
|
friend void swap(BufferT& a, BufferT& b) {
|
|
using std::swap;
|
|
swap(a.size_, b.size_);
|
|
swap(a.capacity_, b.capacity_);
|
|
swap(a.data_, b.data_);
|
|
}
|
|
|
|
private:
|
|
void EnsureCapacityWithHeadroom(size_t capacity, bool extra_headroom) {
|
|
RTC_DCHECK(IsConsistent());
|
|
if (capacity <= capacity_)
|
|
return;
|
|
|
|
// If the caller asks for extra headroom, ensure that the new capacity is
|
|
// >= 1.5 times the old capacity. Any constant > 1 is sufficient to prevent
|
|
// quadratic behavior; as to why we pick 1.5 in particular, see
|
|
// https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md and
|
|
// http://www.gahcep.com/cpp-internals-stl-vector-part-1/.
|
|
const size_t new_capacity =
|
|
extra_headroom ? std::max(capacity, capacity_ + capacity_ / 2)
|
|
: capacity;
|
|
|
|
std::unique_ptr<T[]> new_data(new T[new_capacity]);
|
|
if (data_ != nullptr) {
|
|
std::memcpy(new_data.get(), data_.get(), size_ * sizeof(T));
|
|
}
|
|
MaybeZeroCompleteBuffer();
|
|
data_ = std::move(new_data);
|
|
capacity_ = new_capacity;
|
|
RTC_DCHECK(IsConsistent());
|
|
}
|
|
|
|
// Zero the complete buffer if template argument "ZeroOnFree" is true.
|
|
void MaybeZeroCompleteBuffer() {
|
|
if (ZeroOnFree && capacity_ > 0) {
|
|
// It would be sufficient to only zero "size_" elements, as all other
|
|
// methods already ensure that the unused capacity contains no sensitive
|
|
// data---but better safe than sorry.
|
|
ExplicitZeroMemory(data_.get(), capacity_ * sizeof(T));
|
|
}
|
|
}
|
|
|
|
// Zero the first "count" elements of unused capacity.
|
|
void ZeroTrailingData(size_t count) {
|
|
RTC_DCHECK(IsConsistent());
|
|
RTC_DCHECK_LE(count, capacity_ - size_);
|
|
ExplicitZeroMemory(data_.get() + size_, count * sizeof(T));
|
|
}
|
|
|
|
// Precondition for all methods except Clear, operator= and the destructor.
|
|
// Postcondition for all methods except move construction and move
|
|
// assignment, which leave the moved-from object in a possibly inconsistent
|
|
// state.
|
|
bool IsConsistent() const {
|
|
return (data_ || capacity_ == 0) && capacity_ >= size_;
|
|
}
|
|
|
|
// Called when *this has been moved from. Conceptually it's a no-op, but we
|
|
// can mutate the state slightly to help subsequent sanity checks catch bugs.
|
|
void OnMovedFrom() {
|
|
RTC_DCHECK(!data_); // Our heap block should have been stolen.
|
|
#if RTC_DCHECK_IS_ON
|
|
// Ensure that *this is always inconsistent, to provoke bugs.
|
|
size_ = 1;
|
|
capacity_ = 0;
|
|
#else
|
|
// Make *this consistent and empty. Shouldn't be necessary, but better safe
|
|
// than sorry.
|
|
size_ = 0;
|
|
capacity_ = 0;
|
|
#endif
|
|
}
|
|
|
|
size_t size_;
|
|
size_t capacity_;
|
|
std::unique_ptr<T[]> data_;
|
|
};
|
|
|
|
// By far the most common sort of buffer.
|
|
using Buffer = BufferT<uint8_t>;
|
|
|
|
// A buffer that zeros memory before releasing it.
|
|
template <typename T>
|
|
using ZeroOnFreeBuffer = BufferT<T, true>;
|
|
|
|
} // namespace rtc
|
|
|
|
#endif // RTC_BASE_BUFFER_H_
|