460 lines
16 KiB
C++
460 lines
16 KiB
C++
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/ssl.h>
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/buf.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/rand.h>
|
|
|
|
#include "../crypto/err/internal.h"
|
|
#include "../crypto/internal.h"
|
|
#include "internal.h"
|
|
|
|
|
|
BSSL_NAMESPACE_BEGIN
|
|
|
|
static int do_ssl3_write(SSL *ssl, int type, const uint8_t *in, unsigned len);
|
|
|
|
int ssl3_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *in,
|
|
int len) {
|
|
assert(ssl_can_write(ssl));
|
|
assert(!ssl->s3->aead_write_ctx->is_null_cipher());
|
|
|
|
*out_needs_handshake = false;
|
|
|
|
if (ssl->s3->write_shutdown != ssl_shutdown_none) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
|
|
return -1;
|
|
}
|
|
|
|
unsigned tot, n, nw;
|
|
|
|
assert(ssl->s3->wnum <= INT_MAX);
|
|
tot = ssl->s3->wnum;
|
|
ssl->s3->wnum = 0;
|
|
|
|
// Ensure that if we end up with a smaller value of data to write out than
|
|
// the the original len from a write which didn't complete for non-blocking
|
|
// I/O and also somehow ended up avoiding the check for this in
|
|
// ssl3_write_pending/SSL_R_BAD_WRITE_RETRY as it must never be possible to
|
|
// end up with (len-tot) as a large number that will then promptly send
|
|
// beyond the end of the users buffer ... so we trap and report the error in
|
|
// a way the user will notice.
|
|
if (len < 0 || (size_t)len < tot) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_LENGTH);
|
|
return -1;
|
|
}
|
|
|
|
const int is_early_data_write =
|
|
!ssl->server && SSL_in_early_data(ssl) && ssl->s3->hs->can_early_write;
|
|
|
|
n = len - tot;
|
|
for (;;) {
|
|
// max contains the maximum number of bytes that we can put into a record.
|
|
unsigned max = ssl->max_send_fragment;
|
|
if (is_early_data_write &&
|
|
max > ssl->session->ticket_max_early_data -
|
|
ssl->s3->hs->early_data_written) {
|
|
max =
|
|
ssl->session->ticket_max_early_data - ssl->s3->hs->early_data_written;
|
|
if (max == 0) {
|
|
ssl->s3->wnum = tot;
|
|
ssl->s3->hs->can_early_write = false;
|
|
*out_needs_handshake = true;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (n > max) {
|
|
nw = max;
|
|
} else {
|
|
nw = n;
|
|
}
|
|
|
|
int ret = do_ssl3_write(ssl, SSL3_RT_APPLICATION_DATA, &in[tot], nw);
|
|
if (ret <= 0) {
|
|
ssl->s3->wnum = tot;
|
|
return ret;
|
|
}
|
|
|
|
if (is_early_data_write) {
|
|
ssl->s3->hs->early_data_written += ret;
|
|
}
|
|
|
|
if (ret == (int)n || (ssl->mode & SSL_MODE_ENABLE_PARTIAL_WRITE)) {
|
|
return tot + ret;
|
|
}
|
|
|
|
n -= ret;
|
|
tot += ret;
|
|
}
|
|
}
|
|
|
|
static int ssl3_write_pending(SSL *ssl, int type, const uint8_t *in,
|
|
unsigned int len) {
|
|
if (ssl->s3->wpend_tot > (int)len ||
|
|
(!(ssl->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER) &&
|
|
ssl->s3->wpend_buf != in) ||
|
|
ssl->s3->wpend_type != type) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_WRITE_RETRY);
|
|
return -1;
|
|
}
|
|
|
|
int ret = ssl_write_buffer_flush(ssl);
|
|
if (ret <= 0) {
|
|
return ret;
|
|
}
|
|
ssl->s3->wpend_pending = false;
|
|
return ssl->s3->wpend_ret;
|
|
}
|
|
|
|
// do_ssl3_write writes an SSL record of the given type.
|
|
static int do_ssl3_write(SSL *ssl, int type, const uint8_t *in, unsigned len) {
|
|
// If there is still data from the previous record, flush it.
|
|
if (ssl->s3->wpend_pending) {
|
|
return ssl3_write_pending(ssl, type, in, len);
|
|
}
|
|
|
|
SSLBuffer *buf = &ssl->s3->write_buffer;
|
|
if (len > SSL3_RT_MAX_PLAIN_LENGTH || buf->size() > 0) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
if (!tls_flush_pending_hs_data(ssl)) {
|
|
return -1;
|
|
}
|
|
|
|
size_t flight_len = 0;
|
|
if (ssl->s3->pending_flight != nullptr) {
|
|
flight_len =
|
|
ssl->s3->pending_flight->length - ssl->s3->pending_flight_offset;
|
|
}
|
|
|
|
size_t max_out = flight_len;
|
|
if (len > 0) {
|
|
const size_t max_ciphertext_len = len + SSL_max_seal_overhead(ssl);
|
|
if (max_ciphertext_len < len || max_out + max_ciphertext_len < max_out) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
max_out += max_ciphertext_len;
|
|
}
|
|
|
|
if (max_out == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (!buf->EnsureCap(flight_len + ssl_seal_align_prefix_len(ssl), max_out)) {
|
|
return -1;
|
|
}
|
|
|
|
// Add any unflushed handshake data as a prefix. This may be a KeyUpdate
|
|
// acknowledgment or 0-RTT key change messages. |pending_flight| must be clear
|
|
// when data is added to |write_buffer| or it will be written in the wrong
|
|
// order.
|
|
if (ssl->s3->pending_flight != nullptr) {
|
|
OPENSSL_memcpy(
|
|
buf->remaining().data(),
|
|
ssl->s3->pending_flight->data + ssl->s3->pending_flight_offset,
|
|
flight_len);
|
|
ssl->s3->pending_flight.reset();
|
|
ssl->s3->pending_flight_offset = 0;
|
|
buf->DidWrite(flight_len);
|
|
}
|
|
|
|
if (len > 0) {
|
|
size_t ciphertext_len;
|
|
if (!tls_seal_record(ssl, buf->remaining().data(), &ciphertext_len,
|
|
buf->remaining().size(), type, in, len)) {
|
|
return -1;
|
|
}
|
|
buf->DidWrite(ciphertext_len);
|
|
}
|
|
|
|
// Now that we've made progress on the connection, uncork KeyUpdate
|
|
// acknowledgments.
|
|
ssl->s3->key_update_pending = false;
|
|
|
|
// Memorize arguments so that ssl3_write_pending can detect bad write retries
|
|
// later.
|
|
ssl->s3->wpend_tot = len;
|
|
ssl->s3->wpend_buf = in;
|
|
ssl->s3->wpend_type = type;
|
|
ssl->s3->wpend_ret = len;
|
|
ssl->s3->wpend_pending = true;
|
|
|
|
// We now just need to write the buffer.
|
|
return ssl3_write_pending(ssl, type, in, len);
|
|
}
|
|
|
|
ssl_open_record_t ssl3_open_app_data(SSL *ssl, Span<uint8_t> *out,
|
|
size_t *out_consumed, uint8_t *out_alert,
|
|
Span<uint8_t> in) {
|
|
assert(ssl_can_read(ssl));
|
|
assert(!ssl->s3->aead_read_ctx->is_null_cipher());
|
|
|
|
uint8_t type;
|
|
Span<uint8_t> body;
|
|
auto ret = tls_open_record(ssl, &type, &body, out_consumed, out_alert, in);
|
|
if (ret != ssl_open_record_success) {
|
|
return ret;
|
|
}
|
|
|
|
const bool is_early_data_read = ssl->server && SSL_in_early_data(ssl);
|
|
|
|
if (type == SSL3_RT_HANDSHAKE) {
|
|
// Post-handshake data prior to TLS 1.3 is always renegotiation, which we
|
|
// never accept as a server. Otherwise |ssl3_get_message| will send
|
|
// |SSL_R_EXCESSIVE_MESSAGE_SIZE|.
|
|
if (ssl->server && ssl_protocol_version(ssl) < TLS1_3_VERSION) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION);
|
|
*out_alert = SSL_AD_NO_RENEGOTIATION;
|
|
return ssl_open_record_error;
|
|
}
|
|
|
|
if (!tls_append_handshake_data(ssl, body)) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return ssl_open_record_error;
|
|
}
|
|
return ssl_open_record_discard;
|
|
}
|
|
|
|
if (type != SSL3_RT_APPLICATION_DATA) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
|
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
|
|
return ssl_open_record_error;
|
|
}
|
|
|
|
if (is_early_data_read) {
|
|
if (body.size() > kMaxEarlyDataAccepted - ssl->s3->hs->early_data_read) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MUCH_READ_EARLY_DATA);
|
|
*out_alert = SSL3_AD_UNEXPECTED_MESSAGE;
|
|
return ssl_open_record_error;
|
|
}
|
|
|
|
ssl->s3->hs->early_data_read += body.size();
|
|
}
|
|
|
|
if (body.empty()) {
|
|
return ssl_open_record_discard;
|
|
}
|
|
|
|
*out = body;
|
|
return ssl_open_record_success;
|
|
}
|
|
|
|
ssl_open_record_t ssl3_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
|
|
uint8_t *out_alert,
|
|
Span<uint8_t> in) {
|
|
uint8_t type;
|
|
Span<uint8_t> body;
|
|
auto ret = tls_open_record(ssl, &type, &body, out_consumed, out_alert, in);
|
|
if (ret != ssl_open_record_success) {
|
|
return ret;
|
|
}
|
|
|
|
if (type != SSL3_RT_CHANGE_CIPHER_SPEC) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
|
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
|
|
return ssl_open_record_error;
|
|
}
|
|
|
|
if (body.size() != 1 || body[0] != SSL3_MT_CCS) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC);
|
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
|
|
return ssl_open_record_error;
|
|
}
|
|
|
|
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC, body);
|
|
return ssl_open_record_success;
|
|
}
|
|
|
|
void ssl_send_alert(SSL *ssl, int level, int desc) {
|
|
// This function is called in response to a fatal error from the peer. Ignore
|
|
// any failures writing the alert and report only the original error. In
|
|
// particular, if the transport uses |SSL_write|, our existing error will be
|
|
// clobbered so we must save and restore the error queue. See
|
|
// https://crbug.com/959305.
|
|
//
|
|
// TODO(davidben): Return the alert out of the handshake, rather than calling
|
|
// this function internally everywhere.
|
|
//
|
|
// TODO(davidben): This does not allow retrying if the alert hit EAGAIN. See
|
|
// https://crbug.com/boringssl/130.
|
|
UniquePtr<ERR_SAVE_STATE> err_state(ERR_save_state());
|
|
ssl_send_alert_impl(ssl, level, desc);
|
|
ERR_restore_state(err_state.get());
|
|
}
|
|
|
|
int ssl_send_alert_impl(SSL *ssl, int level, int desc) {
|
|
// It is illegal to send an alert when we've already sent a closing one.
|
|
if (ssl->s3->write_shutdown != ssl_shutdown_none) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
|
|
return -1;
|
|
}
|
|
|
|
if (level == SSL3_AL_WARNING && desc == SSL_AD_CLOSE_NOTIFY) {
|
|
ssl->s3->write_shutdown = ssl_shutdown_close_notify;
|
|
} else {
|
|
assert(level == SSL3_AL_FATAL);
|
|
assert(desc != SSL_AD_CLOSE_NOTIFY);
|
|
ssl->s3->write_shutdown = ssl_shutdown_error;
|
|
}
|
|
|
|
ssl->s3->alert_dispatch = true;
|
|
ssl->s3->send_alert[0] = level;
|
|
ssl->s3->send_alert[1] = desc;
|
|
if (ssl->s3->write_buffer.empty()) {
|
|
// Nothing is being written out, so the alert may be dispatched
|
|
// immediately.
|
|
return ssl->method->dispatch_alert(ssl);
|
|
}
|
|
|
|
// The alert will be dispatched later.
|
|
return -1;
|
|
}
|
|
|
|
int ssl3_dispatch_alert(SSL *ssl) {
|
|
if (ssl->quic_method) {
|
|
if (!ssl->quic_method->send_alert(ssl, ssl->s3->write_level,
|
|
ssl->s3->send_alert[1])) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
} else {
|
|
int ret = do_ssl3_write(ssl, SSL3_RT_ALERT, &ssl->s3->send_alert[0], 2);
|
|
if (ret <= 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ssl->s3->alert_dispatch = false;
|
|
|
|
// If the alert is fatal, flush the BIO now.
|
|
if (ssl->s3->send_alert[0] == SSL3_AL_FATAL) {
|
|
BIO_flush(ssl->wbio.get());
|
|
}
|
|
|
|
ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_ALERT, ssl->s3->send_alert);
|
|
|
|
int alert = (ssl->s3->send_alert[0] << 8) | ssl->s3->send_alert[1];
|
|
ssl_do_info_callback(ssl, SSL_CB_WRITE_ALERT, alert);
|
|
|
|
return 1;
|
|
}
|
|
|
|
BSSL_NAMESPACE_END
|