Nagram/TMessagesProj/jni/webrtc/base/message_loop/message_pump_glib.cc
2020-08-14 19:58:22 +03:00

516 lines
17 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_glib.h"
#include <fcntl.h>
#include <math.h>
#include <glib.h>
#include "base/logging.h"
#include "base/no_destructor.h"
#include "base/numerics/safe_conversions.h"
#include "base/posix/eintr_wrapper.h"
#include "base/synchronization/lock.h"
#include "base/threading/platform_thread.h"
namespace base {
namespace {
// Priorities of event sources are important to let everything be processed.
// In particular, GTK event source should have the highest priority (because
// UI events come from it), then Wayland events (the ones coming from the FD
// watcher), and the lowest priority is GLib events (our base message pump).
//
// The g_source API uses ints to denote priorities, and the lower is its value,
// the higher is the priority (i.e., they are ordered backwards).
constexpr int kPriorityWork = G_PRIORITY_DEFAULT_IDLE;
constexpr int kPriorityFdWatch = G_PRIORITY_DEFAULT_IDLE - 10;
// See the explanation above.
static_assert(G_PRIORITY_DEFAULT < kPriorityFdWatch &&
kPriorityFdWatch < kPriorityWork,
"Wrong priorities are set for event sources!");
// Return a timeout suitable for the glib loop according to |next_task_time|, -1
// to block forever, 0 to return right away, or a timeout in milliseconds from
// now.
int GetTimeIntervalMilliseconds(TimeTicks next_task_time) {
if (next_task_time.is_null())
return 0;
else if (next_task_time.is_max())
return -1;
auto timeout_ms =
(next_task_time - TimeTicks::Now()).InMillisecondsRoundedUp();
return timeout_ms < 0 ? 0 : saturated_cast<int>(timeout_ms);
}
// A brief refresher on GLib:
// GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
// On each iteration of the GLib pump, it calls each source's Prepare function.
// This function should return TRUE if it wants GLib to call its Dispatch, and
// FALSE otherwise. It can also set a timeout in this case for the next time
// Prepare should be called again (it may be called sooner).
// After the Prepare calls, GLib does a poll to check for events from the
// system. File descriptors can be attached to the sources. The poll may block
// if none of the Prepare calls returned TRUE. It will block indefinitely, or
// by the minimum time returned by a source in Prepare.
// After the poll, GLib calls Check for each source that returned FALSE
// from Prepare. The return value of Check has the same meaning as for Prepare,
// making Check a second chance to tell GLib we are ready for Dispatch.
// Finally, GLib calls Dispatch for each source that is ready. If Dispatch
// returns FALSE, GLib will destroy the source. Dispatch calls may be recursive
// (i.e., you can call Run from them), but Prepare and Check cannot.
// Finalize is called when the source is destroyed.
// NOTE: It is common for subsystems to want to process pending events while
// doing intensive work, for example the flash plugin. They usually use the
// following pattern (recommended by the GTK docs):
// while (gtk_events_pending()) {
// gtk_main_iteration();
// }
//
// gtk_events_pending just calls g_main_context_pending, which does the
// following:
// - Call prepare on all the sources.
// - Do the poll with a timeout of 0 (not blocking).
// - Call check on all the sources.
// - *Does not* call dispatch on the sources.
// - Return true if any of prepare() or check() returned true.
//
// gtk_main_iteration just calls g_main_context_iteration, which does the whole
// thing, respecting the timeout for the poll (and block, although it is to if
// gtk_events_pending returned true), and call dispatch.
//
// Thus it is important to only return true from prepare or check if we
// actually have events or work to do. We also need to make sure we keep
// internal state consistent so that if prepare/check return true when called
// from gtk_events_pending, they will still return true when called right
// after, from gtk_main_iteration.
//
// For the GLib pump we try to follow the Windows UI pump model:
// - Whenever we receive a wakeup event or the timer for delayed work expires,
// we run DoSomeWork. That part will also run in the other event pumps.
// - We also run DoSomeWork, and possibly DoIdleWork, in the main loop,
// around event handling.
struct WorkSource : public GSource {
MessagePumpGlib* pump;
};
gboolean WorkSourcePrepare(GSource* source,
gint* timeout_ms) {
*timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
// We always return FALSE, so that our timeout is honored. If we were
// to return TRUE, the timeout would be considered to be 0 and the poll
// would never block. Once the poll is finished, Check will be called.
return FALSE;
}
gboolean WorkSourceCheck(GSource* source) {
// Only return TRUE if Dispatch should be called.
return static_cast<WorkSource*>(source)->pump->HandleCheck();
}
gboolean WorkSourceDispatch(GSource* source,
GSourceFunc unused_func,
gpointer unused_data) {
static_cast<WorkSource*>(source)->pump->HandleDispatch();
// Always return TRUE so our source stays registered.
return TRUE;
}
// I wish these could be const, but g_source_new wants non-const.
GSourceFuncs WorkSourceFuncs = {WorkSourcePrepare, WorkSourceCheck,
WorkSourceDispatch, nullptr};
// The following is used to make sure we only run the MessagePumpGlib on one
// thread. X only has one message pump so we can only have one UI loop per
// process.
#ifndef NDEBUG
// Tracks the pump the most recent pump that has been run.
struct ThreadInfo {
// The pump.
MessagePumpGlib* pump;
// ID of the thread the pump was run on.
PlatformThreadId thread_id;
};
// Used for accesing |thread_info|.
Lock& GetThreadInfoLock() {
static NoDestructor<Lock> thread_info_lock;
return *thread_info_lock;
}
// If non-null it means a MessagePumpGlib exists and has been Run. This is
// destroyed when the MessagePump is destroyed.
ThreadInfo* g_thread_info = nullptr;
void CheckThread(MessagePumpGlib* pump) {
AutoLock auto_lock(GetThreadInfoLock());
if (!g_thread_info) {
g_thread_info = new ThreadInfo;
g_thread_info->pump = pump;
g_thread_info->thread_id = PlatformThread::CurrentId();
}
DCHECK_EQ(g_thread_info->thread_id, PlatformThread::CurrentId())
<< "Running MessagePumpGlib on two different threads; "
"this is unsupported by GLib!";
}
void PumpDestroyed(MessagePumpGlib* pump) {
AutoLock auto_lock(GetThreadInfoLock());
if (g_thread_info && g_thread_info->pump == pump) {
delete g_thread_info;
g_thread_info = nullptr;
}
}
#endif
struct FdWatchSource : public GSource {
MessagePumpGlib* pump;
MessagePumpGlib::FdWatchController* controller;
};
gboolean FdWatchSourcePrepare(GSource* source, gint* timeout_ms) {
*timeout_ms = -1;
return FALSE;
}
gboolean FdWatchSourceCheck(GSource* gsource) {
auto* source = static_cast<FdWatchSource*>(gsource);
return source->pump->HandleFdWatchCheck(source->controller) ? TRUE : FALSE;
}
gboolean FdWatchSourceDispatch(GSource* gsource,
GSourceFunc unused_func,
gpointer unused_data) {
auto* source = static_cast<FdWatchSource*>(gsource);
source->pump->HandleFdWatchDispatch(source->controller);
return TRUE;
}
GSourceFuncs g_fd_watch_source_funcs = {
FdWatchSourcePrepare, FdWatchSourceCheck, FdWatchSourceDispatch, nullptr};
} // namespace
struct MessagePumpGlib::RunState {
Delegate* delegate;
// Used to flag that the current Run() invocation should return ASAP.
bool should_quit;
// Used to count how many Run() invocations are on the stack.
int run_depth;
// The information of the next task available at this run-level. Stored in
// RunState because different set of tasks can be accessible at various
// run-levels (e.g. non-nestable tasks).
Delegate::NextWorkInfo next_work_info;
};
MessagePumpGlib::MessagePumpGlib()
: state_(nullptr),
context_(g_main_context_default()),
wakeup_gpollfd_(new GPollFD) {
// Create our wakeup pipe, which is used to flag when work was scheduled.
int fds[2];
int ret = pipe(fds);
DCHECK_EQ(ret, 0);
(void)ret; // Prevent warning in release mode.
wakeup_pipe_read_ = fds[0];
wakeup_pipe_write_ = fds[1];
wakeup_gpollfd_->fd = wakeup_pipe_read_;
wakeup_gpollfd_->events = G_IO_IN;
work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
static_cast<WorkSource*>(work_source_)->pump = this;
g_source_add_poll(work_source_, wakeup_gpollfd_.get());
g_source_set_priority(work_source_, kPriorityWork);
// This is needed to allow Run calls inside Dispatch.
g_source_set_can_recurse(work_source_, TRUE);
g_source_attach(work_source_, context_);
}
MessagePumpGlib::~MessagePumpGlib() {
#ifndef NDEBUG
PumpDestroyed(this);
#endif
g_source_destroy(work_source_);
g_source_unref(work_source_);
close(wakeup_pipe_read_);
close(wakeup_pipe_write_);
}
MessagePumpGlib::FdWatchController::FdWatchController(const Location& location)
: FdWatchControllerInterface(location) {}
MessagePumpGlib::FdWatchController::~FdWatchController() {
if (IsInitialized()) {
CHECK(StopWatchingFileDescriptor());
}
if (was_destroyed_) {
DCHECK(!*was_destroyed_);
*was_destroyed_ = true;
}
}
bool MessagePumpGlib::FdWatchController::StopWatchingFileDescriptor() {
if (!IsInitialized())
return false;
g_source_destroy(source_);
g_source_unref(source_);
source_ = nullptr;
watcher_ = nullptr;
return true;
}
bool MessagePumpGlib::FdWatchController::IsInitialized() const {
return !!source_;
}
bool MessagePumpGlib::FdWatchController::InitOrUpdate(int fd,
int mode,
FdWatcher* watcher) {
gushort event_flags = 0;
if (mode & WATCH_READ) {
event_flags |= G_IO_IN;
}
if (mode & WATCH_WRITE) {
event_flags |= G_IO_OUT;
}
if (!IsInitialized()) {
poll_fd_ = std::make_unique<GPollFD>();
poll_fd_->fd = fd;
} else {
if (poll_fd_->fd != fd)
return false;
// Combine old/new event masks.
event_flags |= poll_fd_->events;
// Destroy previous source
bool stopped = StopWatchingFileDescriptor();
DCHECK(stopped);
}
poll_fd_->events = event_flags;
poll_fd_->revents = 0;
source_ = g_source_new(&g_fd_watch_source_funcs, sizeof(FdWatchSource));
DCHECK(source_);
g_source_add_poll(source_, poll_fd_.get());
g_source_set_can_recurse(source_, TRUE);
g_source_set_callback(source_, nullptr, nullptr, nullptr);
g_source_set_priority(source_, kPriorityFdWatch);
watcher_ = watcher;
return true;
}
bool MessagePumpGlib::FdWatchController::Attach(MessagePumpGlib* pump) {
DCHECK(pump);
if (!IsInitialized()) {
return false;
}
auto* source = static_cast<FdWatchSource*>(source_);
source->controller = this;
source->pump = pump;
g_source_attach(source_, pump->context_);
return true;
}
void MessagePumpGlib::FdWatchController::NotifyCanRead() {
if (!watcher_)
return;
DCHECK(poll_fd_);
watcher_->OnFileCanReadWithoutBlocking(poll_fd_->fd);
}
void MessagePumpGlib::FdWatchController::NotifyCanWrite() {
if (!watcher_)
return;
DCHECK(poll_fd_);
watcher_->OnFileCanWriteWithoutBlocking(poll_fd_->fd);
}
bool MessagePumpGlib::WatchFileDescriptor(int fd,
bool persistent,
int mode,
FdWatchController* controller,
FdWatcher* watcher) {
DCHECK_GE(fd, 0);
DCHECK(controller);
DCHECK(watcher);
DCHECK(mode == WATCH_READ || mode == WATCH_WRITE || mode == WATCH_READ_WRITE);
// WatchFileDescriptor should be called on the pump thread. It is not
// threadsafe, so the watcher may never be registered.
DCHECK_CALLED_ON_VALID_THREAD(watch_fd_caller_checker_);
if (!controller->InitOrUpdate(fd, mode, watcher)) {
DPLOG(ERROR) << "FdWatchController init failed (fd=" << fd << ")";
return false;
}
return controller->Attach(this);
}
// Return the timeout we want passed to poll.
int MessagePumpGlib::HandlePrepare() {
// |state_| may be null during tests.
if (!state_)
return 0;
return GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time);
}
bool MessagePumpGlib::HandleCheck() {
if (!state_) // state_ may be null during tests.
return false;
// We usually have a single message on the wakeup pipe, since we are only
// signaled when the queue went from empty to non-empty, but there can be
// two messages if a task posted a task, hence we read at most two bytes.
// The glib poll will tell us whether there was data, so this read
// shouldn't block.
if (wakeup_gpollfd_->revents & G_IO_IN) {
char msg[2];
const int num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2));
if (num_bytes < 1) {
NOTREACHED() << "Error reading from the wakeup pipe.";
}
DCHECK((num_bytes == 1 && msg[0] == '!') ||
(num_bytes == 2 && msg[0] == '!' && msg[1] == '!'));
// Since we ate the message, we need to record that we have immediate work,
// because HandleCheck() may be called without HandleDispatch being called
// afterwards.
state_->next_work_info = {TimeTicks()};
return true;
}
// As described in the summary at the top : Check is a second-chance to
// Prepare, verify whether we have work ready again.
if (GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time) ==
0) {
return true;
}
return false;
}
void MessagePumpGlib::HandleDispatch() {
state_->next_work_info = state_->delegate->DoSomeWork();
}
void MessagePumpGlib::Run(Delegate* delegate) {
#ifndef NDEBUG
CheckThread(this);
#endif
RunState state;
state.delegate = delegate;
state.should_quit = false;
state.run_depth = state_ ? state_->run_depth + 1 : 1;
RunState* previous_state = state_;
state_ = &state;
// We really only do a single task for each iteration of the loop. If we
// have done something, assume there is likely something more to do. This
// will mean that we don't block on the message pump until there was nothing
// more to do. We also set this to true to make sure not to block on the
// first iteration of the loop, so RunUntilIdle() works correctly.
bool more_work_is_plausible = true;
// We run our own loop instead of using g_main_loop_quit in one of the
// callbacks. This is so we only quit our own loops, and we don't quit
// nested loops run by others. TODO(deanm): Is this what we want?
for (;;) {
// Don't block if we think we have more work to do.
bool block = !more_work_is_plausible;
more_work_is_plausible = g_main_context_iteration(context_, block);
if (state_->should_quit)
break;
state_->next_work_info = state_->delegate->DoSomeWork();
more_work_is_plausible |= state_->next_work_info.is_immediate();
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
more_work_is_plausible = state_->delegate->DoIdleWork();
if (state_->should_quit)
break;
}
state_ = previous_state;
}
void MessagePumpGlib::Quit() {
if (state_) {
state_->should_quit = true;
} else {
NOTREACHED() << "Quit called outside Run!";
}
}
void MessagePumpGlib::ScheduleWork() {
// This can be called on any thread, so we don't want to touch any state
// variables as we would then need locks all over. This ensures that if
// we are sleeping in a poll that we will wake up.
char msg = '!';
if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
}
}
void MessagePumpGlib::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
// We need to wake up the loop in case the poll timeout needs to be
// adjusted. This will cause us to try to do work, but that's OK.
ScheduleWork();
}
bool MessagePumpGlib::HandleFdWatchCheck(FdWatchController* controller) {
DCHECK(controller);
gushort flags = controller->poll_fd_->revents;
return (flags & G_IO_IN) || (flags & G_IO_OUT);
}
void MessagePumpGlib::HandleFdWatchDispatch(FdWatchController* controller) {
DCHECK(controller);
DCHECK(controller->poll_fd_);
gushort flags = controller->poll_fd_->revents;
if ((flags & G_IO_IN) && (flags & G_IO_OUT)) {
// Both callbacks will be called. It is necessary to check that
// |controller| is not destroyed.
bool controller_was_destroyed = false;
controller->was_destroyed_ = &controller_was_destroyed;
controller->NotifyCanWrite();
if (!controller_was_destroyed)
controller->NotifyCanRead();
if (!controller_was_destroyed)
controller->was_destroyed_ = nullptr;
} else if (flags & G_IO_IN) {
controller->NotifyCanRead();
} else if (flags & G_IO_OUT) {
controller->NotifyCanWrite();
}
}
bool MessagePumpGlib::ShouldQuit() const {
CHECK(state_);
return state_->should_quit;
}
} // namespace base