Nagram/TMessagesProj/jni/webrtc/base/message_loop/message_pump_win.h
2020-08-14 19:58:22 +03:00

296 lines
12 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
#define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
#include <windows.h>
#include <atomic>
#include <list>
#include <memory>
#include "base/base_export.h"
#include "base/message_loop/message_pump.h"
#include "base/observer_list.h"
#include "base/optional.h"
#include "base/threading/thread_checker.h"
#include "base/time/time.h"
#include "base/win/message_window.h"
#include "base/win/scoped_handle.h"
namespace base {
// MessagePumpWin serves as the base for specialized versions of the MessagePump
// for Windows. It provides basic functionality like handling of observers and
// controlling the lifetime of the message pump.
class BASE_EXPORT MessagePumpWin : public MessagePump {
public:
MessagePumpWin();
~MessagePumpWin() override;
// MessagePump methods:
void Run(Delegate* delegate) override;
void Quit() override;
protected:
struct RunState {
Delegate* delegate;
// Used to flag that the current Run() invocation should return ASAP.
bool should_quit;
// Used to count how many Run() invocations are on the stack.
int run_depth;
};
virtual void DoRunLoop() = 0;
// True iff:
// * MessagePumpForUI: there's a kMsgDoWork message pending in the Windows
// Message queue. i.e. when:
// a. The pump is about to wakeup from idle.
// b. The pump is about to enter a nested native loop and a
// ScopedNestableTaskAllower was instantiated to allow application
// tasks to execute in that nested loop (ScopedNestableTaskAllower
// invokes ScheduleWork()).
// c. While in a native (nested) loop : HandleWorkMessage() =>
// ProcessPumpReplacementMessage() invokes ScheduleWork() before
// processing a native message to guarantee this pump will get another
// time slice if it goes into native Windows code and enters a native
// nested loop. This is different from (b.) because we're not yet
// processing an application task at the current run level and
// therefore are expected to keep pumping application tasks without
// necessitating a ScopedNestableTaskAllower.
//
// * MessagePumpforIO: there's a dummy IO completion item with |this| as an
// lpCompletionKey in the queue which is about to wakeup
// WaitForIOCompletion(). MessagePumpForIO doesn't support nesting so
// this is simpler than MessagePumpForUI.
std::atomic_bool work_scheduled_{false};
// State for the current invocation of Run.
RunState* state_ = nullptr;
THREAD_CHECKER(bound_thread_);
};
//-----------------------------------------------------------------------------
// MessagePumpForUI extends MessagePumpWin with methods that are particular to a
// MessageLoop instantiated with TYPE_UI.
//
// MessagePumpForUI implements a "traditional" Windows message pump. It contains
// a nearly infinite loop that peeks out messages, and then dispatches them.
// Intermixed with those peeks are callouts to DoSomeWork. When there are no
// events to be serviced, this pump goes into a wait state. In most cases, this
// message pump handles all processing.
//
// However, when a task, or windows event, invokes on the stack a native dialog
// box or such, that window typically provides a bare bones (native?) message
// pump. That bare-bones message pump generally supports little more than a
// peek of the Windows message queue, followed by a dispatch of the peeked
// message. MessageLoop extends that bare-bones message pump to also service
// Tasks, at the cost of some complexity.
//
// The basic structure of the extension (referred to as a sub-pump) is that a
// special message, kMsgHaveWork, is repeatedly injected into the Windows
// Message queue. Each time the kMsgHaveWork message is peeked, checks are made
// for an extended set of events, including the availability of Tasks to run.
//
// After running a task, the special message kMsgHaveWork is again posted to the
// Windows Message queue, ensuring a future time slice for processing a future
// event. To prevent flooding the Windows Message queue, care is taken to be
// sure that at most one kMsgHaveWork message is EVER pending in the Window's
// Message queue.
//
// There are a few additional complexities in this system where, when there are
// no Tasks to run, this otherwise infinite stream of messages which drives the
// sub-pump is halted. The pump is automatically re-started when Tasks are
// queued.
//
// A second complexity is that the presence of this stream of posted tasks may
// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
// Such paint and timer events always give priority to a posted message, such as
// kMsgHaveWork messages. As a result, care is taken to do some peeking in
// between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork is
// peeked, and before a replacement kMsgHaveWork is posted).
//
// NOTE: Although it may seem odd that messages are used to start and stop this
// flow (as opposed to signaling objects, etc.), it should be understood that
// the native message pump will *only* respond to messages. As a result, it is
// an excellent choice. It is also helpful that the starter messages that are
// placed in the queue when new task arrive also awakens DoRunLoop.
//
class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
public:
MessagePumpForUI();
~MessagePumpForUI() override;
// MessagePump methods:
void ScheduleWork() override;
void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override;
// Make the MessagePumpForUI respond to WM_QUIT messages.
void EnableWmQuit();
// An observer interface to give the scheduler an opportunity to log
// information about MSGs before and after they are dispatched.
class BASE_EXPORT Observer {
public:
virtual void WillDispatchMSG(const MSG& msg) = 0;
virtual void DidDispatchMSG(const MSG& msg) = 0;
};
void AddObserver(Observer* observer);
void RemoveObserver(Observer* obseerver);
private:
bool MessageCallback(UINT message,
WPARAM wparam,
LPARAM lparam,
LRESULT* result);
void DoRunLoop() override;
void WaitForWork(Delegate::NextWorkInfo next_work_info);
void HandleWorkMessage();
void HandleTimerMessage();
void ScheduleNativeTimer(Delegate::NextWorkInfo next_work_info);
void KillNativeTimer();
bool ProcessNextWindowsMessage();
bool ProcessMessageHelper(const MSG& msg);
bool ProcessPumpReplacementMessage();
base::win::MessageWindow message_window_;
// Whether MessagePumpForUI responds to WM_QUIT messages or not.
// TODO(thestig): Remove when the Cloud Print Service goes away.
bool enable_wm_quit_ = false;
// Non-nullopt if there's currently a native timer installed. If so, it
// indicates when the timer is set to fire and can be used to avoid setting
// redundant timers.
Optional<TimeTicks> installed_native_timer_;
// This will become true when a native loop takes our kMsgHaveWork out of the
// system queue. It will be reset to false whenever DoRunLoop regains control.
// Used to decide whether ScheduleDelayedWork() should start a native timer.
bool in_native_loop_ = false;
ObserverList<Observer>::Unchecked observers_;
};
//-----------------------------------------------------------------------------
// MessagePumpForIO extends MessagePumpWin with methods that are particular to a
// MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
// deal with Windows mesagges, and instead has a Run loop based on Completion
// Ports so it is better suited for IO operations.
//
class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
public:
struct BASE_EXPORT IOContext {
IOContext();
OVERLAPPED overlapped;
};
// Clients interested in receiving OS notifications when asynchronous IO
// operations complete should implement this interface and register themselves
// with the message pump.
//
// Typical use #1:
// class MyFile : public IOHandler {
// MyFile() {
// ...
// message_pump->RegisterIOHandler(file_, this);
// }
// // Plus some code to make sure that this destructor is not called
// // while there are pending IO operations.
// ~MyFile() {
// }
// virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
// DWORD error) {
// ...
// delete context;
// }
// void DoSomeIo() {
// ...
// IOContext* context = new IOContext;
// ReadFile(file_, buffer, num_bytes, &read, &context);
// }
// HANDLE file_;
// };
//
// Typical use #2:
// Same as the previous example, except that in order to deal with the
// requirement stated for the destructor, the class calls WaitForIOCompletion
// from the destructor to block until all IO finishes.
// ~MyFile() {
// while(pending_)
// message_pump->WaitForIOCompletion(INFINITE, this);
// }
//
class IOHandler {
public:
virtual ~IOHandler() {}
// This will be called once the pending IO operation associated with
// |context| completes. |error| is the Win32 error code of the IO operation
// (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
// on error.
virtual void OnIOCompleted(IOContext* context,
DWORD bytes_transfered,
DWORD error) = 0;
};
MessagePumpForIO();
~MessagePumpForIO() override;
// MessagePump methods:
void ScheduleWork() override;
void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override;
// Register the handler to be used when asynchronous IO for the given file
// completes. The registration persists as long as |file_handle| is valid, so
// |handler| must be valid as long as there is pending IO for the given file.
HRESULT RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
// Register the handler to be used to process job events. The registration
// persists as long as the job object is live, so |handler| must be valid
// until the job object is destroyed. Returns true if the registration
// succeeded, and false otherwise.
bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
// Waits for the next IO completion that should be processed by |filter|, for
// up to |timeout| milliseconds. Return true if any IO operation completed,
// regardless of the involved handler, and false if the timeout expired. If
// the completion port received any message and the involved IO handler
// matches |filter|, the callback is called before returning from this code;
// if the handler is not the one that we are looking for, the callback will
// be postponed for another time, so reentrancy problems can be avoided.
// External use of this method should be reserved for the rare case when the
// caller is willing to allow pausing regular task dispatching on this thread.
bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
private:
struct IOItem {
IOHandler* handler;
IOContext* context;
DWORD bytes_transfered;
DWORD error;
};
void DoRunLoop() override;
void WaitForWork(Delegate::NextWorkInfo next_work_info);
bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
bool GetIOItem(DWORD timeout, IOItem* item);
bool ProcessInternalIOItem(const IOItem& item);
// The completion port associated with this thread.
win::ScopedHandle port_;
// This list will be empty almost always. It stores IO completions that have
// not been delivered yet because somebody was doing cleanup.
std::list<IOItem> completed_io_;
};
} // namespace base
#endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_