296 lines
12 KiB
C++
296 lines
12 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
|
|
#define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
|
|
|
|
#include <windows.h>
|
|
|
|
#include <atomic>
|
|
#include <list>
|
|
#include <memory>
|
|
|
|
#include "base/base_export.h"
|
|
#include "base/message_loop/message_pump.h"
|
|
#include "base/observer_list.h"
|
|
#include "base/optional.h"
|
|
#include "base/threading/thread_checker.h"
|
|
#include "base/time/time.h"
|
|
#include "base/win/message_window.h"
|
|
#include "base/win/scoped_handle.h"
|
|
|
|
namespace base {
|
|
|
|
// MessagePumpWin serves as the base for specialized versions of the MessagePump
|
|
// for Windows. It provides basic functionality like handling of observers and
|
|
// controlling the lifetime of the message pump.
|
|
class BASE_EXPORT MessagePumpWin : public MessagePump {
|
|
public:
|
|
MessagePumpWin();
|
|
~MessagePumpWin() override;
|
|
|
|
// MessagePump methods:
|
|
void Run(Delegate* delegate) override;
|
|
void Quit() override;
|
|
|
|
protected:
|
|
struct RunState {
|
|
Delegate* delegate;
|
|
|
|
// Used to flag that the current Run() invocation should return ASAP.
|
|
bool should_quit;
|
|
|
|
// Used to count how many Run() invocations are on the stack.
|
|
int run_depth;
|
|
};
|
|
|
|
virtual void DoRunLoop() = 0;
|
|
|
|
// True iff:
|
|
// * MessagePumpForUI: there's a kMsgDoWork message pending in the Windows
|
|
// Message queue. i.e. when:
|
|
// a. The pump is about to wakeup from idle.
|
|
// b. The pump is about to enter a nested native loop and a
|
|
// ScopedNestableTaskAllower was instantiated to allow application
|
|
// tasks to execute in that nested loop (ScopedNestableTaskAllower
|
|
// invokes ScheduleWork()).
|
|
// c. While in a native (nested) loop : HandleWorkMessage() =>
|
|
// ProcessPumpReplacementMessage() invokes ScheduleWork() before
|
|
// processing a native message to guarantee this pump will get another
|
|
// time slice if it goes into native Windows code and enters a native
|
|
// nested loop. This is different from (b.) because we're not yet
|
|
// processing an application task at the current run level and
|
|
// therefore are expected to keep pumping application tasks without
|
|
// necessitating a ScopedNestableTaskAllower.
|
|
//
|
|
// * MessagePumpforIO: there's a dummy IO completion item with |this| as an
|
|
// lpCompletionKey in the queue which is about to wakeup
|
|
// WaitForIOCompletion(). MessagePumpForIO doesn't support nesting so
|
|
// this is simpler than MessagePumpForUI.
|
|
std::atomic_bool work_scheduled_{false};
|
|
|
|
// State for the current invocation of Run.
|
|
RunState* state_ = nullptr;
|
|
|
|
THREAD_CHECKER(bound_thread_);
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MessagePumpForUI extends MessagePumpWin with methods that are particular to a
|
|
// MessageLoop instantiated with TYPE_UI.
|
|
//
|
|
// MessagePumpForUI implements a "traditional" Windows message pump. It contains
|
|
// a nearly infinite loop that peeks out messages, and then dispatches them.
|
|
// Intermixed with those peeks are callouts to DoSomeWork. When there are no
|
|
// events to be serviced, this pump goes into a wait state. In most cases, this
|
|
// message pump handles all processing.
|
|
//
|
|
// However, when a task, or windows event, invokes on the stack a native dialog
|
|
// box or such, that window typically provides a bare bones (native?) message
|
|
// pump. That bare-bones message pump generally supports little more than a
|
|
// peek of the Windows message queue, followed by a dispatch of the peeked
|
|
// message. MessageLoop extends that bare-bones message pump to also service
|
|
// Tasks, at the cost of some complexity.
|
|
//
|
|
// The basic structure of the extension (referred to as a sub-pump) is that a
|
|
// special message, kMsgHaveWork, is repeatedly injected into the Windows
|
|
// Message queue. Each time the kMsgHaveWork message is peeked, checks are made
|
|
// for an extended set of events, including the availability of Tasks to run.
|
|
//
|
|
// After running a task, the special message kMsgHaveWork is again posted to the
|
|
// Windows Message queue, ensuring a future time slice for processing a future
|
|
// event. To prevent flooding the Windows Message queue, care is taken to be
|
|
// sure that at most one kMsgHaveWork message is EVER pending in the Window's
|
|
// Message queue.
|
|
//
|
|
// There are a few additional complexities in this system where, when there are
|
|
// no Tasks to run, this otherwise infinite stream of messages which drives the
|
|
// sub-pump is halted. The pump is automatically re-started when Tasks are
|
|
// queued.
|
|
//
|
|
// A second complexity is that the presence of this stream of posted tasks may
|
|
// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
|
|
// Such paint and timer events always give priority to a posted message, such as
|
|
// kMsgHaveWork messages. As a result, care is taken to do some peeking in
|
|
// between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork is
|
|
// peeked, and before a replacement kMsgHaveWork is posted).
|
|
//
|
|
// NOTE: Although it may seem odd that messages are used to start and stop this
|
|
// flow (as opposed to signaling objects, etc.), it should be understood that
|
|
// the native message pump will *only* respond to messages. As a result, it is
|
|
// an excellent choice. It is also helpful that the starter messages that are
|
|
// placed in the queue when new task arrive also awakens DoRunLoop.
|
|
//
|
|
class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
|
|
public:
|
|
MessagePumpForUI();
|
|
~MessagePumpForUI() override;
|
|
|
|
// MessagePump methods:
|
|
void ScheduleWork() override;
|
|
void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override;
|
|
|
|
// Make the MessagePumpForUI respond to WM_QUIT messages.
|
|
void EnableWmQuit();
|
|
|
|
// An observer interface to give the scheduler an opportunity to log
|
|
// information about MSGs before and after they are dispatched.
|
|
class BASE_EXPORT Observer {
|
|
public:
|
|
virtual void WillDispatchMSG(const MSG& msg) = 0;
|
|
virtual void DidDispatchMSG(const MSG& msg) = 0;
|
|
};
|
|
|
|
void AddObserver(Observer* observer);
|
|
void RemoveObserver(Observer* obseerver);
|
|
|
|
private:
|
|
bool MessageCallback(UINT message,
|
|
WPARAM wparam,
|
|
LPARAM lparam,
|
|
LRESULT* result);
|
|
void DoRunLoop() override;
|
|
void WaitForWork(Delegate::NextWorkInfo next_work_info);
|
|
void HandleWorkMessage();
|
|
void HandleTimerMessage();
|
|
void ScheduleNativeTimer(Delegate::NextWorkInfo next_work_info);
|
|
void KillNativeTimer();
|
|
bool ProcessNextWindowsMessage();
|
|
bool ProcessMessageHelper(const MSG& msg);
|
|
bool ProcessPumpReplacementMessage();
|
|
|
|
base::win::MessageWindow message_window_;
|
|
|
|
// Whether MessagePumpForUI responds to WM_QUIT messages or not.
|
|
// TODO(thestig): Remove when the Cloud Print Service goes away.
|
|
bool enable_wm_quit_ = false;
|
|
|
|
// Non-nullopt if there's currently a native timer installed. If so, it
|
|
// indicates when the timer is set to fire and can be used to avoid setting
|
|
// redundant timers.
|
|
Optional<TimeTicks> installed_native_timer_;
|
|
|
|
// This will become true when a native loop takes our kMsgHaveWork out of the
|
|
// system queue. It will be reset to false whenever DoRunLoop regains control.
|
|
// Used to decide whether ScheduleDelayedWork() should start a native timer.
|
|
bool in_native_loop_ = false;
|
|
|
|
ObserverList<Observer>::Unchecked observers_;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MessagePumpForIO extends MessagePumpWin with methods that are particular to a
|
|
// MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
|
|
// deal with Windows mesagges, and instead has a Run loop based on Completion
|
|
// Ports so it is better suited for IO operations.
|
|
//
|
|
class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
|
|
public:
|
|
struct BASE_EXPORT IOContext {
|
|
IOContext();
|
|
OVERLAPPED overlapped;
|
|
};
|
|
|
|
// Clients interested in receiving OS notifications when asynchronous IO
|
|
// operations complete should implement this interface and register themselves
|
|
// with the message pump.
|
|
//
|
|
// Typical use #1:
|
|
// class MyFile : public IOHandler {
|
|
// MyFile() {
|
|
// ...
|
|
// message_pump->RegisterIOHandler(file_, this);
|
|
// }
|
|
// // Plus some code to make sure that this destructor is not called
|
|
// // while there are pending IO operations.
|
|
// ~MyFile() {
|
|
// }
|
|
// virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
|
|
// DWORD error) {
|
|
// ...
|
|
// delete context;
|
|
// }
|
|
// void DoSomeIo() {
|
|
// ...
|
|
// IOContext* context = new IOContext;
|
|
// ReadFile(file_, buffer, num_bytes, &read, &context);
|
|
// }
|
|
// HANDLE file_;
|
|
// };
|
|
//
|
|
// Typical use #2:
|
|
// Same as the previous example, except that in order to deal with the
|
|
// requirement stated for the destructor, the class calls WaitForIOCompletion
|
|
// from the destructor to block until all IO finishes.
|
|
// ~MyFile() {
|
|
// while(pending_)
|
|
// message_pump->WaitForIOCompletion(INFINITE, this);
|
|
// }
|
|
//
|
|
class IOHandler {
|
|
public:
|
|
virtual ~IOHandler() {}
|
|
// This will be called once the pending IO operation associated with
|
|
// |context| completes. |error| is the Win32 error code of the IO operation
|
|
// (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
|
|
// on error.
|
|
virtual void OnIOCompleted(IOContext* context,
|
|
DWORD bytes_transfered,
|
|
DWORD error) = 0;
|
|
};
|
|
|
|
MessagePumpForIO();
|
|
~MessagePumpForIO() override;
|
|
|
|
// MessagePump methods:
|
|
void ScheduleWork() override;
|
|
void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override;
|
|
|
|
// Register the handler to be used when asynchronous IO for the given file
|
|
// completes. The registration persists as long as |file_handle| is valid, so
|
|
// |handler| must be valid as long as there is pending IO for the given file.
|
|
HRESULT RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
|
|
|
|
// Register the handler to be used to process job events. The registration
|
|
// persists as long as the job object is live, so |handler| must be valid
|
|
// until the job object is destroyed. Returns true if the registration
|
|
// succeeded, and false otherwise.
|
|
bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
|
|
|
|
// Waits for the next IO completion that should be processed by |filter|, for
|
|
// up to |timeout| milliseconds. Return true if any IO operation completed,
|
|
// regardless of the involved handler, and false if the timeout expired. If
|
|
// the completion port received any message and the involved IO handler
|
|
// matches |filter|, the callback is called before returning from this code;
|
|
// if the handler is not the one that we are looking for, the callback will
|
|
// be postponed for another time, so reentrancy problems can be avoided.
|
|
// External use of this method should be reserved for the rare case when the
|
|
// caller is willing to allow pausing regular task dispatching on this thread.
|
|
bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
|
|
|
|
private:
|
|
struct IOItem {
|
|
IOHandler* handler;
|
|
IOContext* context;
|
|
DWORD bytes_transfered;
|
|
DWORD error;
|
|
};
|
|
|
|
void DoRunLoop() override;
|
|
void WaitForWork(Delegate::NextWorkInfo next_work_info);
|
|
bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
|
|
bool GetIOItem(DWORD timeout, IOItem* item);
|
|
bool ProcessInternalIOItem(const IOItem& item);
|
|
|
|
// The completion port associated with this thread.
|
|
win::ScopedHandle port_;
|
|
// This list will be empty almost always. It stores IO completions that have
|
|
// not been delivered yet because somebody was doing cleanup.
|
|
std::list<IOItem> completed_io_;
|
|
};
|
|
|
|
} // namespace base
|
|
|
|
#endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
|