2074 lines
77 KiB
C++
2074 lines
77 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/audio_processing_impl.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/array_view.h"
|
|
#include "api/audio/audio_frame.h"
|
|
#include "common_audio/audio_converter.h"
|
|
#include "common_audio/include/audio_util.h"
|
|
#include "modules/audio_processing/aec_dump/aec_dump_factory.h"
|
|
#include "modules/audio_processing/agc2/gain_applier.h"
|
|
#include "modules/audio_processing/audio_buffer.h"
|
|
#include "modules/audio_processing/common.h"
|
|
#include "modules/audio_processing/include/audio_frame_view.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "modules/audio_processing/optionally_built_submodule_creators.h"
|
|
#include "rtc_base/atomic_ops.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/constructor_magic.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/ref_counted_object.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "rtc_base/trace_event.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
#include "system_wrappers/include/metrics.h"
|
|
|
|
#define RETURN_ON_ERR(expr) \
|
|
do { \
|
|
int err = (expr); \
|
|
if (err != kNoError) { \
|
|
return err; \
|
|
} \
|
|
} while (0)
|
|
|
|
namespace webrtc {
|
|
|
|
constexpr int kRuntimeSettingQueueSize = 100;
|
|
|
|
namespace {
|
|
|
|
static bool LayoutHasKeyboard(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
return false;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return true;
|
|
}
|
|
|
|
RTC_NOTREACHED();
|
|
return false;
|
|
}
|
|
|
|
bool SampleRateSupportsMultiBand(int sample_rate_hz) {
|
|
return sample_rate_hz == AudioProcessing::kSampleRate32kHz ||
|
|
sample_rate_hz == AudioProcessing::kSampleRate48kHz;
|
|
}
|
|
|
|
// Checks whether the high-pass filter should be done in the full-band.
|
|
bool EnforceSplitBandHpf() {
|
|
return field_trial::IsEnabled("WebRTC-FullBandHpfKillSwitch");
|
|
}
|
|
|
|
// Checks whether AEC3 should be allowed to decide what the default
|
|
// configuration should be based on the render and capture channel configuration
|
|
// at hand.
|
|
bool UseSetupSpecificDefaultAec3Congfig() {
|
|
return !field_trial::IsEnabled(
|
|
"WebRTC-Aec3SetupSpecificDefaultConfigDefaultsKillSwitch");
|
|
}
|
|
|
|
// Identify the native processing rate that best handles a sample rate.
|
|
int SuitableProcessRate(int minimum_rate,
|
|
int max_splitting_rate,
|
|
bool band_splitting_required) {
|
|
const int uppermost_native_rate =
|
|
band_splitting_required ? max_splitting_rate : 48000;
|
|
for (auto rate : {16000, 32000, 48000}) {
|
|
if (rate >= uppermost_native_rate) {
|
|
return uppermost_native_rate;
|
|
}
|
|
if (rate >= minimum_rate) {
|
|
return rate;
|
|
}
|
|
}
|
|
RTC_NOTREACHED();
|
|
return uppermost_native_rate;
|
|
}
|
|
|
|
GainControl::Mode Agc1ConfigModeToInterfaceMode(
|
|
AudioProcessing::Config::GainController1::Mode mode) {
|
|
using Agc1Config = AudioProcessing::Config::GainController1;
|
|
switch (mode) {
|
|
case Agc1Config::kAdaptiveAnalog:
|
|
return GainControl::kAdaptiveAnalog;
|
|
case Agc1Config::kAdaptiveDigital:
|
|
return GainControl::kAdaptiveDigital;
|
|
case Agc1Config::kFixedDigital:
|
|
return GainControl::kFixedDigital;
|
|
}
|
|
}
|
|
|
|
// Maximum lengths that frame of samples being passed from the render side to
|
|
// the capture side can have (does not apply to AEC3).
|
|
static const size_t kMaxAllowedValuesOfSamplesPerBand = 160;
|
|
static const size_t kMaxAllowedValuesOfSamplesPerFrame = 480;
|
|
|
|
// Maximum number of frames to buffer in the render queue.
|
|
// TODO(peah): Decrease this once we properly handle hugely unbalanced
|
|
// reverse and forward call numbers.
|
|
static const size_t kMaxNumFramesToBuffer = 100;
|
|
} // namespace
|
|
|
|
// Throughout webrtc, it's assumed that success is represented by zero.
|
|
static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero");
|
|
|
|
AudioProcessingImpl::SubmoduleStates::SubmoduleStates(
|
|
bool capture_post_processor_enabled,
|
|
bool render_pre_processor_enabled,
|
|
bool capture_analyzer_enabled)
|
|
: capture_post_processor_enabled_(capture_post_processor_enabled),
|
|
render_pre_processor_enabled_(render_pre_processor_enabled),
|
|
capture_analyzer_enabled_(capture_analyzer_enabled) {}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::Update(
|
|
bool high_pass_filter_enabled,
|
|
bool mobile_echo_controller_enabled,
|
|
bool residual_echo_detector_enabled,
|
|
bool noise_suppressor_enabled,
|
|
bool adaptive_gain_controller_enabled,
|
|
bool gain_controller2_enabled,
|
|
bool pre_amplifier_enabled,
|
|
bool echo_controller_enabled,
|
|
bool voice_detector_enabled,
|
|
bool transient_suppressor_enabled) {
|
|
bool changed = false;
|
|
changed |= (high_pass_filter_enabled != high_pass_filter_enabled_);
|
|
changed |=
|
|
(mobile_echo_controller_enabled != mobile_echo_controller_enabled_);
|
|
changed |=
|
|
(residual_echo_detector_enabled != residual_echo_detector_enabled_);
|
|
changed |= (noise_suppressor_enabled != noise_suppressor_enabled_);
|
|
changed |=
|
|
(adaptive_gain_controller_enabled != adaptive_gain_controller_enabled_);
|
|
changed |= (gain_controller2_enabled != gain_controller2_enabled_);
|
|
changed |= (pre_amplifier_enabled_ != pre_amplifier_enabled);
|
|
changed |= (echo_controller_enabled != echo_controller_enabled_);
|
|
changed |= (voice_detector_enabled != voice_detector_enabled_);
|
|
changed |= (transient_suppressor_enabled != transient_suppressor_enabled_);
|
|
if (changed) {
|
|
high_pass_filter_enabled_ = high_pass_filter_enabled;
|
|
mobile_echo_controller_enabled_ = mobile_echo_controller_enabled;
|
|
residual_echo_detector_enabled_ = residual_echo_detector_enabled;
|
|
noise_suppressor_enabled_ = noise_suppressor_enabled;
|
|
adaptive_gain_controller_enabled_ = adaptive_gain_controller_enabled;
|
|
gain_controller2_enabled_ = gain_controller2_enabled;
|
|
pre_amplifier_enabled_ = pre_amplifier_enabled;
|
|
echo_controller_enabled_ = echo_controller_enabled;
|
|
voice_detector_enabled_ = voice_detector_enabled;
|
|
transient_suppressor_enabled_ = transient_suppressor_enabled;
|
|
}
|
|
|
|
changed |= first_update_;
|
|
first_update_ = false;
|
|
return changed;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandSubModulesActive()
|
|
const {
|
|
return CaptureMultiBandProcessingPresent() || voice_detector_enabled_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingPresent()
|
|
const {
|
|
// If echo controller is present, assume it performs active processing.
|
|
return CaptureMultiBandProcessingActive(/*ec_processing_active=*/true);
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingActive(
|
|
bool ec_processing_active) const {
|
|
return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ ||
|
|
noise_suppressor_enabled_ || adaptive_gain_controller_enabled_ ||
|
|
(echo_controller_enabled_ && ec_processing_active);
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureFullBandProcessingActive()
|
|
const {
|
|
return gain_controller2_enabled_ || capture_post_processor_enabled_ ||
|
|
pre_amplifier_enabled_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::CaptureAnalyzerActive() const {
|
|
return capture_analyzer_enabled_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandSubModulesActive()
|
|
const {
|
|
return RenderMultiBandProcessingActive() || mobile_echo_controller_enabled_ ||
|
|
adaptive_gain_controller_enabled_ || echo_controller_enabled_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::RenderFullBandProcessingActive()
|
|
const {
|
|
return render_pre_processor_enabled_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandProcessingActive()
|
|
const {
|
|
return false;
|
|
}
|
|
|
|
bool AudioProcessingImpl::SubmoduleStates::HighPassFilteringRequired() const {
|
|
return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ ||
|
|
noise_suppressor_enabled_;
|
|
}
|
|
|
|
AudioProcessingImpl::AudioProcessingImpl(const webrtc::Config& config)
|
|
: AudioProcessingImpl(config,
|
|
/*capture_post_processor=*/nullptr,
|
|
/*render_pre_processor=*/nullptr,
|
|
/*echo_control_factory=*/nullptr,
|
|
/*echo_detector=*/nullptr,
|
|
/*capture_analyzer=*/nullptr) {}
|
|
|
|
int AudioProcessingImpl::instance_count_ = 0;
|
|
|
|
AudioProcessingImpl::AudioProcessingImpl(
|
|
const webrtc::Config& config,
|
|
std::unique_ptr<CustomProcessing> capture_post_processor,
|
|
std::unique_ptr<CustomProcessing> render_pre_processor,
|
|
std::unique_ptr<EchoControlFactory> echo_control_factory,
|
|
rtc::scoped_refptr<EchoDetector> echo_detector,
|
|
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer)
|
|
: data_dumper_(
|
|
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
|
use_setup_specific_default_aec3_config_(
|
|
UseSetupSpecificDefaultAec3Congfig()),
|
|
capture_runtime_settings_(kRuntimeSettingQueueSize),
|
|
render_runtime_settings_(kRuntimeSettingQueueSize),
|
|
capture_runtime_settings_enqueuer_(&capture_runtime_settings_),
|
|
render_runtime_settings_enqueuer_(&render_runtime_settings_),
|
|
echo_control_factory_(std::move(echo_control_factory)),
|
|
submodule_states_(!!capture_post_processor,
|
|
!!render_pre_processor,
|
|
!!capture_analyzer),
|
|
submodules_(std::move(capture_post_processor),
|
|
std::move(render_pre_processor),
|
|
std::move(echo_detector),
|
|
std::move(capture_analyzer)),
|
|
constants_(!field_trial::IsEnabled(
|
|
"WebRTC-ApmExperimentalMultiChannelRenderKillSwitch"),
|
|
!field_trial::IsEnabled(
|
|
"WebRTC-ApmExperimentalMultiChannelCaptureKillSwitch"),
|
|
EnforceSplitBandHpf()),
|
|
capture_nonlocked_() {
|
|
RTC_LOG(LS_INFO) << "Injected APM submodules:"
|
|
"\nEcho control factory: "
|
|
<< !!echo_control_factory_
|
|
<< "\nEcho detector: " << !!submodules_.echo_detector
|
|
<< "\nCapture analyzer: " << !!submodules_.capture_analyzer
|
|
<< "\nCapture post processor: "
|
|
<< !!submodules_.capture_post_processor
|
|
<< "\nRender pre processor: "
|
|
<< !!submodules_.render_pre_processor;
|
|
|
|
// Mark Echo Controller enabled if a factory is injected.
|
|
capture_nonlocked_.echo_controller_enabled =
|
|
static_cast<bool>(echo_control_factory_);
|
|
|
|
// If no echo detector is injected, use the ResidualEchoDetector.
|
|
if (!submodules_.echo_detector) {
|
|
submodules_.echo_detector =
|
|
new rtc::RefCountedObject<ResidualEchoDetector>();
|
|
}
|
|
|
|
#if !(defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS))
|
|
// TODO(webrtc:5298): Remove once the use of ExperimentalNs has been
|
|
// deprecated.
|
|
config_.transient_suppression.enabled = config.Get<ExperimentalNs>().enabled;
|
|
|
|
// TODO(webrtc:5298): Remove once the use of ExperimentalAgc has been
|
|
// deprecated.
|
|
config_.gain_controller1.analog_gain_controller.enabled =
|
|
config.Get<ExperimentalAgc>().enabled;
|
|
config_.gain_controller1.analog_gain_controller.startup_min_volume =
|
|
config.Get<ExperimentalAgc>().startup_min_volume;
|
|
config_.gain_controller1.analog_gain_controller.clipped_level_min =
|
|
config.Get<ExperimentalAgc>().clipped_level_min;
|
|
config_.gain_controller1.analog_gain_controller.enable_agc2_level_estimator =
|
|
config.Get<ExperimentalAgc>().enabled_agc2_level_estimator;
|
|
config_.gain_controller1.analog_gain_controller.enable_digital_adaptive =
|
|
!config.Get<ExperimentalAgc>().digital_adaptive_disabled;
|
|
#endif
|
|
}
|
|
|
|
AudioProcessingImpl::~AudioProcessingImpl() = default;
|
|
|
|
int AudioProcessingImpl::Initialize() {
|
|
// Run in a single-threaded manner during initialization.
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
return InitializeLocked();
|
|
}
|
|
|
|
int AudioProcessingImpl::Initialize(int capture_input_sample_rate_hz,
|
|
int capture_output_sample_rate_hz,
|
|
int render_input_sample_rate_hz,
|
|
ChannelLayout capture_input_layout,
|
|
ChannelLayout capture_output_layout,
|
|
ChannelLayout render_input_layout) {
|
|
const ProcessingConfig processing_config = {
|
|
{{capture_input_sample_rate_hz, ChannelsFromLayout(capture_input_layout),
|
|
LayoutHasKeyboard(capture_input_layout)},
|
|
{capture_output_sample_rate_hz,
|
|
ChannelsFromLayout(capture_output_layout),
|
|
LayoutHasKeyboard(capture_output_layout)},
|
|
{render_input_sample_rate_hz, ChannelsFromLayout(render_input_layout),
|
|
LayoutHasKeyboard(render_input_layout)},
|
|
{render_input_sample_rate_hz, ChannelsFromLayout(render_input_layout),
|
|
LayoutHasKeyboard(render_input_layout)}}};
|
|
|
|
return Initialize(processing_config);
|
|
}
|
|
|
|
int AudioProcessingImpl::Initialize(const ProcessingConfig& processing_config) {
|
|
// Run in a single-threaded manner during initialization.
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
return InitializeLocked(processing_config);
|
|
}
|
|
|
|
int AudioProcessingImpl::MaybeInitializeRender(
|
|
const ProcessingConfig& processing_config) {
|
|
// Called from both threads. Thread check is therefore not possible.
|
|
if (processing_config == formats_.api_format) {
|
|
return kNoError;
|
|
}
|
|
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
return InitializeLocked(processing_config);
|
|
}
|
|
|
|
int AudioProcessingImpl::InitializeLocked() {
|
|
UpdateActiveSubmoduleStates();
|
|
|
|
const int render_audiobuffer_sample_rate_hz =
|
|
formats_.api_format.reverse_output_stream().num_frames() == 0
|
|
? formats_.render_processing_format.sample_rate_hz()
|
|
: formats_.api_format.reverse_output_stream().sample_rate_hz();
|
|
if (formats_.api_format.reverse_input_stream().num_channels() > 0) {
|
|
render_.render_audio.reset(new AudioBuffer(
|
|
formats_.api_format.reverse_input_stream().sample_rate_hz(),
|
|
formats_.api_format.reverse_input_stream().num_channels(),
|
|
formats_.render_processing_format.sample_rate_hz(),
|
|
formats_.render_processing_format.num_channels(),
|
|
render_audiobuffer_sample_rate_hz,
|
|
formats_.render_processing_format.num_channels()));
|
|
if (formats_.api_format.reverse_input_stream() !=
|
|
formats_.api_format.reverse_output_stream()) {
|
|
render_.render_converter = AudioConverter::Create(
|
|
formats_.api_format.reverse_input_stream().num_channels(),
|
|
formats_.api_format.reverse_input_stream().num_frames(),
|
|
formats_.api_format.reverse_output_stream().num_channels(),
|
|
formats_.api_format.reverse_output_stream().num_frames());
|
|
} else {
|
|
render_.render_converter.reset(nullptr);
|
|
}
|
|
} else {
|
|
render_.render_audio.reset(nullptr);
|
|
render_.render_converter.reset(nullptr);
|
|
}
|
|
|
|
capture_.capture_audio.reset(new AudioBuffer(
|
|
formats_.api_format.input_stream().sample_rate_hz(),
|
|
formats_.api_format.input_stream().num_channels(),
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz(),
|
|
formats_.api_format.output_stream().num_channels(),
|
|
formats_.api_format.output_stream().sample_rate_hz(),
|
|
formats_.api_format.output_stream().num_channels()));
|
|
|
|
if (capture_nonlocked_.capture_processing_format.sample_rate_hz() <
|
|
formats_.api_format.output_stream().sample_rate_hz() &&
|
|
formats_.api_format.output_stream().sample_rate_hz() == 48000) {
|
|
capture_.capture_fullband_audio.reset(
|
|
new AudioBuffer(formats_.api_format.input_stream().sample_rate_hz(),
|
|
formats_.api_format.input_stream().num_channels(),
|
|
formats_.api_format.output_stream().sample_rate_hz(),
|
|
formats_.api_format.output_stream().num_channels(),
|
|
formats_.api_format.output_stream().sample_rate_hz(),
|
|
formats_.api_format.output_stream().num_channels()));
|
|
} else {
|
|
capture_.capture_fullband_audio.reset();
|
|
}
|
|
|
|
AllocateRenderQueue();
|
|
|
|
InitializeGainController1();
|
|
InitializeTransientSuppressor();
|
|
InitializeHighPassFilter(true);
|
|
InitializeVoiceDetector();
|
|
InitializeResidualEchoDetector();
|
|
InitializeEchoController();
|
|
InitializeGainController2();
|
|
InitializeNoiseSuppressor();
|
|
InitializeAnalyzer();
|
|
InitializePostProcessor();
|
|
InitializePreProcessor();
|
|
|
|
if (aec_dump_) {
|
|
aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis());
|
|
}
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::InitializeLocked(const ProcessingConfig& config) {
|
|
UpdateActiveSubmoduleStates();
|
|
|
|
for (const auto& stream : config.streams) {
|
|
if (stream.num_channels() > 0 && stream.sample_rate_hz() <= 0) {
|
|
return kBadSampleRateError;
|
|
}
|
|
}
|
|
|
|
const size_t num_in_channels = config.input_stream().num_channels();
|
|
const size_t num_out_channels = config.output_stream().num_channels();
|
|
|
|
// Need at least one input channel.
|
|
// Need either one output channel or as many outputs as there are inputs.
|
|
if (num_in_channels == 0 ||
|
|
!(num_out_channels == 1 || num_out_channels == num_in_channels)) {
|
|
return kBadNumberChannelsError;
|
|
}
|
|
|
|
formats_.api_format = config;
|
|
|
|
// Choose maximum rate to use for the split filtering.
|
|
RTC_DCHECK(config_.pipeline.maximum_internal_processing_rate == 48000 ||
|
|
config_.pipeline.maximum_internal_processing_rate == 32000);
|
|
int max_splitting_rate = 48000;
|
|
if (config_.pipeline.maximum_internal_processing_rate == 32000) {
|
|
max_splitting_rate = config_.pipeline.maximum_internal_processing_rate;
|
|
}
|
|
|
|
int capture_processing_rate = SuitableProcessRate(
|
|
std::min(formats_.api_format.input_stream().sample_rate_hz(),
|
|
formats_.api_format.output_stream().sample_rate_hz()),
|
|
max_splitting_rate,
|
|
submodule_states_.CaptureMultiBandSubModulesActive() ||
|
|
submodule_states_.RenderMultiBandSubModulesActive());
|
|
RTC_DCHECK_NE(8000, capture_processing_rate);
|
|
|
|
capture_nonlocked_.capture_processing_format =
|
|
StreamConfig(capture_processing_rate);
|
|
|
|
int render_processing_rate;
|
|
if (!capture_nonlocked_.echo_controller_enabled) {
|
|
render_processing_rate = SuitableProcessRate(
|
|
std::min(formats_.api_format.reverse_input_stream().sample_rate_hz(),
|
|
formats_.api_format.reverse_output_stream().sample_rate_hz()),
|
|
max_splitting_rate,
|
|
submodule_states_.CaptureMultiBandSubModulesActive() ||
|
|
submodule_states_.RenderMultiBandSubModulesActive());
|
|
} else {
|
|
render_processing_rate = capture_processing_rate;
|
|
}
|
|
|
|
// If the forward sample rate is 8 kHz, the render stream is also processed
|
|
// at this rate.
|
|
if (capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
|
|
kSampleRate8kHz) {
|
|
render_processing_rate = kSampleRate8kHz;
|
|
} else {
|
|
render_processing_rate =
|
|
std::max(render_processing_rate, static_cast<int>(kSampleRate16kHz));
|
|
}
|
|
|
|
RTC_DCHECK_NE(8000, render_processing_rate);
|
|
|
|
if (submodule_states_.RenderMultiBandSubModulesActive()) {
|
|
// By default, downmix the render stream to mono for analysis. This has been
|
|
// demonstrated to work well for AEC in most practical scenarios.
|
|
const bool multi_channel_render = config_.pipeline.multi_channel_render &&
|
|
constants_.multi_channel_render_support;
|
|
int render_processing_num_channels =
|
|
multi_channel_render
|
|
? formats_.api_format.reverse_input_stream().num_channels()
|
|
: 1;
|
|
formats_.render_processing_format =
|
|
StreamConfig(render_processing_rate, render_processing_num_channels);
|
|
} else {
|
|
formats_.render_processing_format = StreamConfig(
|
|
formats_.api_format.reverse_input_stream().sample_rate_hz(),
|
|
formats_.api_format.reverse_input_stream().num_channels());
|
|
}
|
|
|
|
if (capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
|
|
kSampleRate32kHz ||
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
|
|
kSampleRate48kHz) {
|
|
capture_nonlocked_.split_rate = kSampleRate16kHz;
|
|
} else {
|
|
capture_nonlocked_.split_rate =
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz();
|
|
}
|
|
|
|
return InitializeLocked();
|
|
}
|
|
|
|
void AudioProcessingImpl::ApplyConfig(const AudioProcessing::Config& config) {
|
|
RTC_LOG(LS_INFO) << "AudioProcessing::ApplyConfig: " << config.ToString();
|
|
|
|
// Run in a single-threaded manner when applying the settings.
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
|
|
const bool pipeline_config_changed =
|
|
config_.pipeline.multi_channel_render !=
|
|
config.pipeline.multi_channel_render ||
|
|
config_.pipeline.multi_channel_capture !=
|
|
config.pipeline.multi_channel_capture ||
|
|
config_.pipeline.maximum_internal_processing_rate !=
|
|
config.pipeline.maximum_internal_processing_rate;
|
|
|
|
const bool aec_config_changed =
|
|
config_.echo_canceller.enabled != config.echo_canceller.enabled ||
|
|
config_.echo_canceller.mobile_mode != config.echo_canceller.mobile_mode;
|
|
|
|
const bool agc1_config_changed =
|
|
config_.gain_controller1.enabled != config.gain_controller1.enabled ||
|
|
config_.gain_controller1.mode != config.gain_controller1.mode ||
|
|
config_.gain_controller1.target_level_dbfs !=
|
|
config.gain_controller1.target_level_dbfs ||
|
|
config_.gain_controller1.compression_gain_db !=
|
|
config.gain_controller1.compression_gain_db ||
|
|
config_.gain_controller1.enable_limiter !=
|
|
config.gain_controller1.enable_limiter ||
|
|
config_.gain_controller1.analog_level_minimum !=
|
|
config.gain_controller1.analog_level_minimum ||
|
|
config_.gain_controller1.analog_level_maximum !=
|
|
config.gain_controller1.analog_level_maximum ||
|
|
config_.gain_controller1.analog_gain_controller.enabled !=
|
|
config.gain_controller1.analog_gain_controller.enabled ||
|
|
config_.gain_controller1.analog_gain_controller.startup_min_volume !=
|
|
config.gain_controller1.analog_gain_controller.startup_min_volume ||
|
|
config_.gain_controller1.analog_gain_controller.clipped_level_min !=
|
|
config.gain_controller1.analog_gain_controller.clipped_level_min ||
|
|
config_.gain_controller1.analog_gain_controller
|
|
.enable_agc2_level_estimator !=
|
|
config.gain_controller1.analog_gain_controller
|
|
.enable_agc2_level_estimator ||
|
|
config_.gain_controller1.analog_gain_controller.enable_digital_adaptive !=
|
|
config.gain_controller1.analog_gain_controller
|
|
.enable_digital_adaptive;
|
|
|
|
const bool agc2_config_changed =
|
|
config_.gain_controller2.enabled != config.gain_controller2.enabled;
|
|
|
|
const bool voice_detection_config_changed =
|
|
config_.voice_detection.enabled != config.voice_detection.enabled;
|
|
|
|
const bool ns_config_changed =
|
|
config_.noise_suppression.enabled != config.noise_suppression.enabled ||
|
|
config_.noise_suppression.level != config.noise_suppression.level;
|
|
|
|
const bool ts_config_changed = config_.transient_suppression.enabled !=
|
|
config.transient_suppression.enabled;
|
|
|
|
const bool pre_amplifier_config_changed =
|
|
config_.pre_amplifier.enabled != config.pre_amplifier.enabled ||
|
|
config_.pre_amplifier.fixed_gain_factor !=
|
|
config.pre_amplifier.fixed_gain_factor;
|
|
|
|
config_ = config;
|
|
|
|
if (aec_config_changed) {
|
|
InitializeEchoController();
|
|
}
|
|
|
|
if (ns_config_changed) {
|
|
InitializeNoiseSuppressor();
|
|
}
|
|
|
|
if (ts_config_changed) {
|
|
InitializeTransientSuppressor();
|
|
}
|
|
|
|
InitializeHighPassFilter(false);
|
|
|
|
if (agc1_config_changed) {
|
|
InitializeGainController1();
|
|
}
|
|
|
|
const bool config_ok = GainController2::Validate(config_.gain_controller2);
|
|
if (!config_ok) {
|
|
RTC_LOG(LS_ERROR) << "AudioProcessing module config error\n"
|
|
"Gain Controller 2: "
|
|
<< GainController2::ToString(config_.gain_controller2)
|
|
<< "\nReverting to default parameter set";
|
|
config_.gain_controller2 = AudioProcessing::Config::GainController2();
|
|
}
|
|
|
|
if (agc2_config_changed) {
|
|
InitializeGainController2();
|
|
}
|
|
|
|
if (pre_amplifier_config_changed) {
|
|
InitializePreAmplifier();
|
|
}
|
|
|
|
if (config_.level_estimation.enabled && !submodules_.output_level_estimator) {
|
|
submodules_.output_level_estimator = std::make_unique<LevelEstimator>();
|
|
}
|
|
|
|
if (voice_detection_config_changed) {
|
|
InitializeVoiceDetector();
|
|
}
|
|
|
|
// Reinitialization must happen after all submodule configuration to avoid
|
|
// additional reinitializations on the next capture / render processing call.
|
|
if (pipeline_config_changed) {
|
|
InitializeLocked(formats_.api_format);
|
|
}
|
|
}
|
|
|
|
// TODO(webrtc:5298): Remove.
|
|
void AudioProcessingImpl::SetExtraOptions(const webrtc::Config& config) {}
|
|
|
|
void AudioProcessingImpl::OverrideSubmoduleCreationForTesting(
|
|
const ApmSubmoduleCreationOverrides& overrides) {
|
|
MutexLock lock(&mutex_capture_);
|
|
submodule_creation_overrides_ = overrides;
|
|
}
|
|
|
|
int AudioProcessingImpl::proc_sample_rate_hz() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return capture_nonlocked_.capture_processing_format.sample_rate_hz();
|
|
}
|
|
|
|
int AudioProcessingImpl::proc_fullband_sample_rate_hz() const {
|
|
return capture_.capture_fullband_audio
|
|
? capture_.capture_fullband_audio->num_frames() * 100
|
|
: capture_nonlocked_.capture_processing_format.sample_rate_hz();
|
|
}
|
|
|
|
int AudioProcessingImpl::proc_split_sample_rate_hz() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return capture_nonlocked_.split_rate;
|
|
}
|
|
|
|
size_t AudioProcessingImpl::num_reverse_channels() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return formats_.render_processing_format.num_channels();
|
|
}
|
|
|
|
size_t AudioProcessingImpl::num_input_channels() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return formats_.api_format.input_stream().num_channels();
|
|
}
|
|
|
|
size_t AudioProcessingImpl::num_proc_channels() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
const bool multi_channel_capture = config_.pipeline.multi_channel_capture &&
|
|
constants_.multi_channel_capture_support;
|
|
if (capture_nonlocked_.echo_controller_enabled && !multi_channel_capture) {
|
|
return 1;
|
|
}
|
|
return num_output_channels();
|
|
}
|
|
|
|
size_t AudioProcessingImpl::num_output_channels() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return formats_.api_format.output_stream().num_channels();
|
|
}
|
|
|
|
void AudioProcessingImpl::set_output_will_be_muted(bool muted) {
|
|
MutexLock lock(&mutex_capture_);
|
|
capture_.output_will_be_muted = muted;
|
|
if (submodules_.agc_manager.get()) {
|
|
submodules_.agc_manager->SetCaptureMuted(capture_.output_will_be_muted);
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::SetRuntimeSetting(RuntimeSetting setting) {
|
|
switch (setting.type()) {
|
|
case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
|
|
case RuntimeSetting::Type::kPlayoutAudioDeviceChange:
|
|
render_runtime_settings_enqueuer_.Enqueue(setting);
|
|
return;
|
|
case RuntimeSetting::Type::kCapturePreGain:
|
|
case RuntimeSetting::Type::kCaptureCompressionGain:
|
|
case RuntimeSetting::Type::kCaptureFixedPostGain:
|
|
capture_runtime_settings_enqueuer_.Enqueue(setting);
|
|
return;
|
|
case RuntimeSetting::Type::kPlayoutVolumeChange:
|
|
capture_runtime_settings_enqueuer_.Enqueue(setting);
|
|
render_runtime_settings_enqueuer_.Enqueue(setting);
|
|
return;
|
|
case RuntimeSetting::Type::kNotSpecified:
|
|
RTC_NOTREACHED();
|
|
return;
|
|
}
|
|
// The language allows the enum to have a non-enumerator
|
|
// value. Check that this doesn't happen.
|
|
RTC_NOTREACHED();
|
|
}
|
|
|
|
AudioProcessingImpl::RuntimeSettingEnqueuer::RuntimeSettingEnqueuer(
|
|
SwapQueue<RuntimeSetting>* runtime_settings)
|
|
: runtime_settings_(*runtime_settings) {
|
|
RTC_DCHECK(runtime_settings);
|
|
}
|
|
|
|
AudioProcessingImpl::RuntimeSettingEnqueuer::~RuntimeSettingEnqueuer() =
|
|
default;
|
|
|
|
void AudioProcessingImpl::RuntimeSettingEnqueuer::Enqueue(
|
|
RuntimeSetting setting) {
|
|
size_t remaining_attempts = 10;
|
|
while (!runtime_settings_.Insert(&setting) && remaining_attempts-- > 0) {
|
|
RuntimeSetting setting_to_discard;
|
|
if (runtime_settings_.Remove(&setting_to_discard))
|
|
RTC_LOG(LS_ERROR)
|
|
<< "The runtime settings queue is full. Oldest setting discarded.";
|
|
}
|
|
if (remaining_attempts == 0)
|
|
RTC_LOG(LS_ERROR) << "Cannot enqueue a new runtime setting.";
|
|
}
|
|
|
|
int AudioProcessingImpl::MaybeInitializeCapture(
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config) {
|
|
ProcessingConfig processing_config;
|
|
bool reinitialization_required = false;
|
|
{
|
|
// Acquire the capture lock in order to access api_format. The lock is
|
|
// released immediately, as we may need to acquire the render lock as part
|
|
// of the conditional reinitialization.
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
processing_config = formats_.api_format;
|
|
reinitialization_required = UpdateActiveSubmoduleStates();
|
|
}
|
|
|
|
if (processing_config.input_stream() != input_config) {
|
|
processing_config.input_stream() = input_config;
|
|
reinitialization_required = true;
|
|
}
|
|
|
|
if (processing_config.output_stream() != output_config) {
|
|
processing_config.output_stream() = output_config;
|
|
reinitialization_required = true;
|
|
}
|
|
|
|
if (reinitialization_required) {
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
RETURN_ON_ERR(InitializeLocked(processing_config));
|
|
}
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessStream(const float* const* src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
float* const* dest) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_StreamConfig");
|
|
if (!src || !dest) {
|
|
return kNullPointerError;
|
|
}
|
|
|
|
RETURN_ON_ERR(MaybeInitializeCapture(input_config, output_config));
|
|
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
|
|
if (aec_dump_) {
|
|
RecordUnprocessedCaptureStream(src);
|
|
}
|
|
|
|
capture_.keyboard_info.Extract(src, formats_.api_format.input_stream());
|
|
capture_.capture_audio->CopyFrom(src, formats_.api_format.input_stream());
|
|
if (capture_.capture_fullband_audio) {
|
|
capture_.capture_fullband_audio->CopyFrom(
|
|
src, formats_.api_format.input_stream());
|
|
}
|
|
RETURN_ON_ERR(ProcessCaptureStreamLocked());
|
|
if (capture_.capture_fullband_audio) {
|
|
capture_.capture_fullband_audio->CopyTo(formats_.api_format.output_stream(),
|
|
dest);
|
|
} else {
|
|
capture_.capture_audio->CopyTo(formats_.api_format.output_stream(), dest);
|
|
}
|
|
|
|
if (aec_dump_) {
|
|
RecordProcessedCaptureStream(dest);
|
|
}
|
|
return kNoError;
|
|
}
|
|
|
|
void AudioProcessingImpl::HandleCaptureRuntimeSettings() {
|
|
RuntimeSetting setting;
|
|
while (capture_runtime_settings_.Remove(&setting)) {
|
|
if (aec_dump_) {
|
|
aec_dump_->WriteRuntimeSetting(setting);
|
|
}
|
|
switch (setting.type()) {
|
|
case RuntimeSetting::Type::kCapturePreGain:
|
|
if (config_.pre_amplifier.enabled) {
|
|
float value;
|
|
setting.GetFloat(&value);
|
|
config_.pre_amplifier.fixed_gain_factor = value;
|
|
submodules_.pre_amplifier->SetGainFactor(value);
|
|
}
|
|
// TODO(bugs.chromium.org/9138): Log setting handling by Aec Dump.
|
|
break;
|
|
case RuntimeSetting::Type::kCaptureCompressionGain: {
|
|
if (!submodules_.agc_manager) {
|
|
float value;
|
|
setting.GetFloat(&value);
|
|
int int_value = static_cast<int>(value + .5f);
|
|
config_.gain_controller1.compression_gain_db = int_value;
|
|
if (submodules_.gain_control) {
|
|
int error =
|
|
submodules_.gain_control->set_compression_gain_db(int_value);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case RuntimeSetting::Type::kCaptureFixedPostGain: {
|
|
if (submodules_.gain_controller2) {
|
|
float value;
|
|
setting.GetFloat(&value);
|
|
config_.gain_controller2.fixed_digital.gain_db = value;
|
|
submodules_.gain_controller2->ApplyConfig(config_.gain_controller2);
|
|
}
|
|
break;
|
|
}
|
|
case RuntimeSetting::Type::kPlayoutVolumeChange: {
|
|
int value;
|
|
setting.GetInt(&value);
|
|
capture_.playout_volume = value;
|
|
break;
|
|
}
|
|
case RuntimeSetting::Type::kPlayoutAudioDeviceChange:
|
|
RTC_NOTREACHED();
|
|
break;
|
|
case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
|
|
RTC_NOTREACHED();
|
|
break;
|
|
case RuntimeSetting::Type::kNotSpecified:
|
|
RTC_NOTREACHED();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::HandleRenderRuntimeSettings() {
|
|
RuntimeSetting setting;
|
|
while (render_runtime_settings_.Remove(&setting)) {
|
|
if (aec_dump_) {
|
|
aec_dump_->WriteRuntimeSetting(setting);
|
|
}
|
|
switch (setting.type()) {
|
|
case RuntimeSetting::Type::kPlayoutAudioDeviceChange: // fall-through
|
|
case RuntimeSetting::Type::kPlayoutVolumeChange: // fall-through
|
|
case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
|
|
if (submodules_.render_pre_processor) {
|
|
submodules_.render_pre_processor->SetRuntimeSetting(setting);
|
|
}
|
|
break;
|
|
case RuntimeSetting::Type::kCapturePreGain: // fall-through
|
|
case RuntimeSetting::Type::kCaptureCompressionGain: // fall-through
|
|
case RuntimeSetting::Type::kCaptureFixedPostGain: // fall-through
|
|
case RuntimeSetting::Type::kNotSpecified:
|
|
RTC_NOTREACHED();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::QueueBandedRenderAudio(AudioBuffer* audio) {
|
|
RTC_DCHECK_GE(160, audio->num_frames_per_band());
|
|
|
|
if (submodules_.echo_control_mobile) {
|
|
EchoControlMobileImpl::PackRenderAudioBuffer(audio, num_output_channels(),
|
|
num_reverse_channels(),
|
|
&aecm_render_queue_buffer_);
|
|
RTC_DCHECK(aecm_render_signal_queue_);
|
|
// Insert the samples into the queue.
|
|
if (!aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_)) {
|
|
// The data queue is full and needs to be emptied.
|
|
EmptyQueuedRenderAudio();
|
|
|
|
// Retry the insert (should always work).
|
|
bool result =
|
|
aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_);
|
|
RTC_DCHECK(result);
|
|
}
|
|
}
|
|
|
|
if (!submodules_.agc_manager && submodules_.gain_control) {
|
|
GainControlImpl::PackRenderAudioBuffer(*audio, &agc_render_queue_buffer_);
|
|
// Insert the samples into the queue.
|
|
if (!agc_render_signal_queue_->Insert(&agc_render_queue_buffer_)) {
|
|
// The data queue is full and needs to be emptied.
|
|
EmptyQueuedRenderAudio();
|
|
|
|
// Retry the insert (should always work).
|
|
bool result = agc_render_signal_queue_->Insert(&agc_render_queue_buffer_);
|
|
RTC_DCHECK(result);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::QueueNonbandedRenderAudio(AudioBuffer* audio) {
|
|
ResidualEchoDetector::PackRenderAudioBuffer(audio, &red_render_queue_buffer_);
|
|
|
|
// Insert the samples into the queue.
|
|
if (!red_render_signal_queue_->Insert(&red_render_queue_buffer_)) {
|
|
// The data queue is full and needs to be emptied.
|
|
EmptyQueuedRenderAudio();
|
|
|
|
// Retry the insert (should always work).
|
|
bool result = red_render_signal_queue_->Insert(&red_render_queue_buffer_);
|
|
RTC_DCHECK(result);
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::AllocateRenderQueue() {
|
|
const size_t new_agc_render_queue_element_max_size =
|
|
std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerBand);
|
|
|
|
const size_t new_red_render_queue_element_max_size =
|
|
std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerFrame);
|
|
|
|
// Reallocate the queues if the queue item sizes are too small to fit the
|
|
// data to put in the queues.
|
|
|
|
if (agc_render_queue_element_max_size_ <
|
|
new_agc_render_queue_element_max_size) {
|
|
agc_render_queue_element_max_size_ = new_agc_render_queue_element_max_size;
|
|
|
|
std::vector<int16_t> template_queue_element(
|
|
agc_render_queue_element_max_size_);
|
|
|
|
agc_render_signal_queue_.reset(
|
|
new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>(
|
|
kMaxNumFramesToBuffer, template_queue_element,
|
|
RenderQueueItemVerifier<int16_t>(
|
|
agc_render_queue_element_max_size_)));
|
|
|
|
agc_render_queue_buffer_.resize(agc_render_queue_element_max_size_);
|
|
agc_capture_queue_buffer_.resize(agc_render_queue_element_max_size_);
|
|
} else {
|
|
agc_render_signal_queue_->Clear();
|
|
}
|
|
|
|
if (red_render_queue_element_max_size_ <
|
|
new_red_render_queue_element_max_size) {
|
|
red_render_queue_element_max_size_ = new_red_render_queue_element_max_size;
|
|
|
|
std::vector<float> template_queue_element(
|
|
red_render_queue_element_max_size_);
|
|
|
|
red_render_signal_queue_.reset(
|
|
new SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>(
|
|
kMaxNumFramesToBuffer, template_queue_element,
|
|
RenderQueueItemVerifier<float>(
|
|
red_render_queue_element_max_size_)));
|
|
|
|
red_render_queue_buffer_.resize(red_render_queue_element_max_size_);
|
|
red_capture_queue_buffer_.resize(red_render_queue_element_max_size_);
|
|
} else {
|
|
red_render_signal_queue_->Clear();
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::EmptyQueuedRenderAudio() {
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
EmptyQueuedRenderAudioLocked();
|
|
}
|
|
|
|
void AudioProcessingImpl::EmptyQueuedRenderAudioLocked() {
|
|
if (submodules_.echo_control_mobile) {
|
|
RTC_DCHECK(aecm_render_signal_queue_);
|
|
while (aecm_render_signal_queue_->Remove(&aecm_capture_queue_buffer_)) {
|
|
submodules_.echo_control_mobile->ProcessRenderAudio(
|
|
aecm_capture_queue_buffer_);
|
|
}
|
|
}
|
|
|
|
if (submodules_.gain_control) {
|
|
while (agc_render_signal_queue_->Remove(&agc_capture_queue_buffer_)) {
|
|
submodules_.gain_control->ProcessRenderAudio(agc_capture_queue_buffer_);
|
|
}
|
|
}
|
|
|
|
while (red_render_signal_queue_->Remove(&red_capture_queue_buffer_)) {
|
|
RTC_DCHECK(submodules_.echo_detector);
|
|
submodules_.echo_detector->AnalyzeRenderAudio(red_capture_queue_buffer_);
|
|
}
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessStream(const int16_t* const src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
int16_t* const dest) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_AudioFrame");
|
|
RETURN_ON_ERR(MaybeInitializeCapture(input_config, output_config));
|
|
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
|
|
if (aec_dump_) {
|
|
RecordUnprocessedCaptureStream(src, input_config);
|
|
}
|
|
|
|
capture_.capture_audio->CopyFrom(src, input_config);
|
|
if (capture_.capture_fullband_audio) {
|
|
capture_.capture_fullband_audio->CopyFrom(src, input_config);
|
|
}
|
|
RETURN_ON_ERR(ProcessCaptureStreamLocked());
|
|
if (submodule_states_.CaptureMultiBandProcessingPresent() ||
|
|
submodule_states_.CaptureFullBandProcessingActive()) {
|
|
if (capture_.capture_fullband_audio) {
|
|
capture_.capture_fullband_audio->CopyTo(output_config, dest);
|
|
} else {
|
|
capture_.capture_audio->CopyTo(output_config, dest);
|
|
}
|
|
}
|
|
|
|
if (aec_dump_) {
|
|
RecordProcessedCaptureStream(dest, output_config);
|
|
}
|
|
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessCaptureStreamLocked() {
|
|
EmptyQueuedRenderAudioLocked();
|
|
HandleCaptureRuntimeSettings();
|
|
|
|
// Ensure that not both the AEC and AECM are active at the same time.
|
|
// TODO(peah): Simplify once the public API Enable functions for these
|
|
// are moved to APM.
|
|
RTC_DCHECK_LE(
|
|
!!submodules_.echo_controller + !!submodules_.echo_control_mobile, 1);
|
|
|
|
AudioBuffer* capture_buffer = capture_.capture_audio.get(); // For brevity.
|
|
AudioBuffer* linear_aec_buffer = capture_.linear_aec_output.get();
|
|
|
|
if (submodules_.high_pass_filter &&
|
|
config_.high_pass_filter.apply_in_full_band &&
|
|
!constants_.enforce_split_band_hpf) {
|
|
submodules_.high_pass_filter->Process(capture_buffer,
|
|
/*use_split_band_data=*/false);
|
|
}
|
|
|
|
if (submodules_.pre_amplifier) {
|
|
submodules_.pre_amplifier->ApplyGain(AudioFrameView<float>(
|
|
capture_buffer->channels(), capture_buffer->num_channels(),
|
|
capture_buffer->num_frames()));
|
|
}
|
|
|
|
capture_input_rms_.Analyze(rtc::ArrayView<const float>(
|
|
capture_buffer->channels_const()[0],
|
|
capture_nonlocked_.capture_processing_format.num_frames()));
|
|
const bool log_rms = ++capture_rms_interval_counter_ >= 1000;
|
|
if (log_rms) {
|
|
capture_rms_interval_counter_ = 0;
|
|
RmsLevel::Levels levels = capture_input_rms_.AverageAndPeak();
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelAverageRms",
|
|
levels.average, 1, RmsLevel::kMinLevelDb, 64);
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelPeakRms",
|
|
levels.peak, 1, RmsLevel::kMinLevelDb, 64);
|
|
}
|
|
|
|
if (submodules_.echo_controller) {
|
|
// Detect and flag any change in the analog gain.
|
|
int analog_mic_level = recommended_stream_analog_level_locked();
|
|
capture_.echo_path_gain_change =
|
|
capture_.prev_analog_mic_level != analog_mic_level &&
|
|
capture_.prev_analog_mic_level != -1;
|
|
capture_.prev_analog_mic_level = analog_mic_level;
|
|
|
|
// Detect and flag any change in the pre-amplifier gain.
|
|
if (submodules_.pre_amplifier) {
|
|
float pre_amp_gain = submodules_.pre_amplifier->GetGainFactor();
|
|
capture_.echo_path_gain_change =
|
|
capture_.echo_path_gain_change ||
|
|
(capture_.prev_pre_amp_gain != pre_amp_gain &&
|
|
capture_.prev_pre_amp_gain >= 0.f);
|
|
capture_.prev_pre_amp_gain = pre_amp_gain;
|
|
}
|
|
|
|
// Detect volume change.
|
|
capture_.echo_path_gain_change =
|
|
capture_.echo_path_gain_change ||
|
|
(capture_.prev_playout_volume != capture_.playout_volume &&
|
|
capture_.prev_playout_volume >= 0);
|
|
capture_.prev_playout_volume = capture_.playout_volume;
|
|
|
|
submodules_.echo_controller->AnalyzeCapture(capture_buffer);
|
|
}
|
|
|
|
if (submodules_.agc_manager) {
|
|
submodules_.agc_manager->AnalyzePreProcess(capture_buffer);
|
|
}
|
|
|
|
if (submodule_states_.CaptureMultiBandSubModulesActive() &&
|
|
SampleRateSupportsMultiBand(
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz())) {
|
|
capture_buffer->SplitIntoFrequencyBands();
|
|
}
|
|
|
|
const bool multi_channel_capture = config_.pipeline.multi_channel_capture &&
|
|
constants_.multi_channel_capture_support;
|
|
if (submodules_.echo_controller && !multi_channel_capture) {
|
|
// Force down-mixing of the number of channels after the detection of
|
|
// capture signal saturation.
|
|
// TODO(peah): Look into ensuring that this kind of tampering with the
|
|
// AudioBuffer functionality should not be needed.
|
|
capture_buffer->set_num_channels(1);
|
|
}
|
|
|
|
if (submodules_.high_pass_filter &&
|
|
(!config_.high_pass_filter.apply_in_full_band ||
|
|
constants_.enforce_split_band_hpf)) {
|
|
submodules_.high_pass_filter->Process(capture_buffer,
|
|
/*use_split_band_data=*/true);
|
|
}
|
|
|
|
if (submodules_.gain_control) {
|
|
RETURN_ON_ERR(
|
|
submodules_.gain_control->AnalyzeCaptureAudio(*capture_buffer));
|
|
}
|
|
|
|
if ((!config_.noise_suppression.analyze_linear_aec_output_when_available ||
|
|
!linear_aec_buffer || submodules_.echo_control_mobile) &&
|
|
submodules_.noise_suppressor) {
|
|
submodules_.noise_suppressor->Analyze(*capture_buffer);
|
|
}
|
|
|
|
if (submodules_.echo_control_mobile) {
|
|
// Ensure that the stream delay was set before the call to the
|
|
// AECM ProcessCaptureAudio function.
|
|
if (!capture_.was_stream_delay_set) {
|
|
return AudioProcessing::kStreamParameterNotSetError;
|
|
}
|
|
|
|
if (submodules_.noise_suppressor) {
|
|
submodules_.noise_suppressor->Process(capture_buffer);
|
|
}
|
|
|
|
RETURN_ON_ERR(submodules_.echo_control_mobile->ProcessCaptureAudio(
|
|
capture_buffer, stream_delay_ms()));
|
|
} else {
|
|
if (submodules_.echo_controller) {
|
|
data_dumper_->DumpRaw("stream_delay", stream_delay_ms());
|
|
|
|
if (capture_.was_stream_delay_set) {
|
|
submodules_.echo_controller->SetAudioBufferDelay(stream_delay_ms());
|
|
}
|
|
|
|
submodules_.echo_controller->ProcessCapture(
|
|
capture_buffer, linear_aec_buffer, capture_.echo_path_gain_change);
|
|
}
|
|
|
|
if (config_.noise_suppression.analyze_linear_aec_output_when_available &&
|
|
linear_aec_buffer && submodules_.noise_suppressor) {
|
|
submodules_.noise_suppressor->Analyze(*linear_aec_buffer);
|
|
}
|
|
|
|
if (submodules_.noise_suppressor) {
|
|
submodules_.noise_suppressor->Process(capture_buffer);
|
|
}
|
|
}
|
|
|
|
if (config_.voice_detection.enabled) {
|
|
capture_.stats.voice_detected =
|
|
submodules_.voice_detector->ProcessCaptureAudio(capture_buffer);
|
|
} else {
|
|
capture_.stats.voice_detected = absl::nullopt;
|
|
}
|
|
|
|
if (submodules_.agc_manager) {
|
|
submodules_.agc_manager->Process(capture_buffer);
|
|
|
|
absl::optional<int> new_digital_gain =
|
|
submodules_.agc_manager->GetDigitalComressionGain();
|
|
if (new_digital_gain && submodules_.gain_control) {
|
|
submodules_.gain_control->set_compression_gain_db(*new_digital_gain);
|
|
}
|
|
}
|
|
|
|
if (submodules_.gain_control) {
|
|
// TODO(peah): Add reporting from AEC3 whether there is echo.
|
|
RETURN_ON_ERR(submodules_.gain_control->ProcessCaptureAudio(
|
|
capture_buffer, /*stream_has_echo*/ false));
|
|
}
|
|
|
|
if (submodule_states_.CaptureMultiBandProcessingPresent() &&
|
|
SampleRateSupportsMultiBand(
|
|
capture_nonlocked_.capture_processing_format.sample_rate_hz())) {
|
|
capture_buffer->MergeFrequencyBands();
|
|
}
|
|
|
|
if (capture_.capture_fullband_audio) {
|
|
const auto& ec = submodules_.echo_controller;
|
|
bool ec_active = ec ? ec->ActiveProcessing() : false;
|
|
// Only update the fullband buffer if the multiband processing has changed
|
|
// the signal. Keep the original signal otherwise.
|
|
if (submodule_states_.CaptureMultiBandProcessingActive(ec_active)) {
|
|
capture_buffer->CopyTo(capture_.capture_fullband_audio.get());
|
|
}
|
|
capture_buffer = capture_.capture_fullband_audio.get();
|
|
}
|
|
|
|
if (config_.residual_echo_detector.enabled) {
|
|
RTC_DCHECK(submodules_.echo_detector);
|
|
submodules_.echo_detector->AnalyzeCaptureAudio(rtc::ArrayView<const float>(
|
|
capture_buffer->channels()[0], capture_buffer->num_frames()));
|
|
}
|
|
|
|
// TODO(aluebs): Investigate if the transient suppression placement should be
|
|
// before or after the AGC.
|
|
if (submodules_.transient_suppressor) {
|
|
float voice_probability = submodules_.agc_manager.get()
|
|
? submodules_.agc_manager->voice_probability()
|
|
: 1.f;
|
|
|
|
submodules_.transient_suppressor->Suppress(
|
|
capture_buffer->channels()[0], capture_buffer->num_frames(),
|
|
capture_buffer->num_channels(),
|
|
capture_buffer->split_bands_const(0)[kBand0To8kHz],
|
|
capture_buffer->num_frames_per_band(),
|
|
capture_.keyboard_info.keyboard_data,
|
|
capture_.keyboard_info.num_keyboard_frames, voice_probability,
|
|
capture_.key_pressed);
|
|
}
|
|
|
|
// Experimental APM sub-module that analyzes |capture_buffer|.
|
|
if (submodules_.capture_analyzer) {
|
|
submodules_.capture_analyzer->Analyze(capture_buffer);
|
|
}
|
|
|
|
if (submodules_.gain_controller2) {
|
|
submodules_.gain_controller2->NotifyAnalogLevel(
|
|
recommended_stream_analog_level_locked());
|
|
submodules_.gain_controller2->Process(capture_buffer);
|
|
}
|
|
|
|
if (submodules_.capture_post_processor) {
|
|
submodules_.capture_post_processor->Process(capture_buffer);
|
|
}
|
|
|
|
// The level estimator operates on the recombined data.
|
|
if (config_.level_estimation.enabled) {
|
|
submodules_.output_level_estimator->ProcessStream(*capture_buffer);
|
|
capture_.stats.output_rms_dbfs = submodules_.output_level_estimator->RMS();
|
|
} else {
|
|
capture_.stats.output_rms_dbfs = absl::nullopt;
|
|
}
|
|
|
|
capture_output_rms_.Analyze(rtc::ArrayView<const float>(
|
|
capture_buffer->channels_const()[0],
|
|
capture_nonlocked_.capture_processing_format.num_frames()));
|
|
if (log_rms) {
|
|
RmsLevel::Levels levels = capture_output_rms_.AverageAndPeak();
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureOutputLevelAverageRms",
|
|
levels.average, 1, RmsLevel::kMinLevelDb, 64);
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureOutputLevelPeakRms",
|
|
levels.peak, 1, RmsLevel::kMinLevelDb, 64);
|
|
}
|
|
|
|
if (submodules_.agc_manager) {
|
|
int level = recommended_stream_analog_level_locked();
|
|
data_dumper_->DumpRaw("experimental_gain_control_stream_analog_level", 1,
|
|
&level);
|
|
}
|
|
|
|
// Compute echo-related stats.
|
|
if (submodules_.echo_controller) {
|
|
auto ec_metrics = submodules_.echo_controller->GetMetrics();
|
|
capture_.stats.echo_return_loss = ec_metrics.echo_return_loss;
|
|
capture_.stats.echo_return_loss_enhancement =
|
|
ec_metrics.echo_return_loss_enhancement;
|
|
capture_.stats.delay_ms = ec_metrics.delay_ms;
|
|
}
|
|
if (config_.residual_echo_detector.enabled) {
|
|
RTC_DCHECK(submodules_.echo_detector);
|
|
auto ed_metrics = submodules_.echo_detector->GetMetrics();
|
|
capture_.stats.residual_echo_likelihood = ed_metrics.echo_likelihood;
|
|
capture_.stats.residual_echo_likelihood_recent_max =
|
|
ed_metrics.echo_likelihood_recent_max;
|
|
}
|
|
|
|
// Pass stats for reporting.
|
|
stats_reporter_.UpdateStatistics(capture_.stats);
|
|
|
|
capture_.was_stream_delay_set = false;
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::AnalyzeReverseStream(
|
|
const float* const* data,
|
|
const StreamConfig& reverse_config) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::AnalyzeReverseStream_StreamConfig");
|
|
MutexLock lock(&mutex_render_);
|
|
return AnalyzeReverseStreamLocked(data, reverse_config, reverse_config);
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessReverseStream(const float* const* src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
float* const* dest) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_StreamConfig");
|
|
MutexLock lock(&mutex_render_);
|
|
RETURN_ON_ERR(AnalyzeReverseStreamLocked(src, input_config, output_config));
|
|
if (submodule_states_.RenderMultiBandProcessingActive() ||
|
|
submodule_states_.RenderFullBandProcessingActive()) {
|
|
render_.render_audio->CopyTo(formats_.api_format.reverse_output_stream(),
|
|
dest);
|
|
} else if (formats_.api_format.reverse_input_stream() !=
|
|
formats_.api_format.reverse_output_stream()) {
|
|
render_.render_converter->Convert(src, input_config.num_samples(), dest,
|
|
output_config.num_samples());
|
|
} else {
|
|
CopyAudioIfNeeded(src, input_config.num_frames(),
|
|
input_config.num_channels(), dest);
|
|
}
|
|
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::AnalyzeReverseStreamLocked(
|
|
const float* const* src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config) {
|
|
if (src == nullptr) {
|
|
return kNullPointerError;
|
|
}
|
|
|
|
if (input_config.num_channels() == 0) {
|
|
return kBadNumberChannelsError;
|
|
}
|
|
|
|
ProcessingConfig processing_config = formats_.api_format;
|
|
processing_config.reverse_input_stream() = input_config;
|
|
processing_config.reverse_output_stream() = output_config;
|
|
|
|
RETURN_ON_ERR(MaybeInitializeRender(processing_config));
|
|
RTC_DCHECK_EQ(input_config.num_frames(),
|
|
formats_.api_format.reverse_input_stream().num_frames());
|
|
|
|
if (aec_dump_) {
|
|
const size_t channel_size =
|
|
formats_.api_format.reverse_input_stream().num_frames();
|
|
const size_t num_channels =
|
|
formats_.api_format.reverse_input_stream().num_channels();
|
|
aec_dump_->WriteRenderStreamMessage(
|
|
AudioFrameView<const float>(src, num_channels, channel_size));
|
|
}
|
|
render_.render_audio->CopyFrom(src,
|
|
formats_.api_format.reverse_input_stream());
|
|
return ProcessRenderStreamLocked();
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessReverseStream(const int16_t* const src,
|
|
const StreamConfig& input_config,
|
|
const StreamConfig& output_config,
|
|
int16_t* const dest) {
|
|
TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_AudioFrame");
|
|
|
|
if (input_config.num_channels() <= 0) {
|
|
return AudioProcessing::Error::kBadNumberChannelsError;
|
|
}
|
|
|
|
MutexLock lock(&mutex_render_);
|
|
ProcessingConfig processing_config = formats_.api_format;
|
|
processing_config.reverse_input_stream().set_sample_rate_hz(
|
|
input_config.sample_rate_hz());
|
|
processing_config.reverse_input_stream().set_num_channels(
|
|
input_config.num_channels());
|
|
processing_config.reverse_output_stream().set_sample_rate_hz(
|
|
output_config.sample_rate_hz());
|
|
processing_config.reverse_output_stream().set_num_channels(
|
|
output_config.num_channels());
|
|
|
|
RETURN_ON_ERR(MaybeInitializeRender(processing_config));
|
|
if (input_config.num_frames() !=
|
|
formats_.api_format.reverse_input_stream().num_frames()) {
|
|
return kBadDataLengthError;
|
|
}
|
|
|
|
if (aec_dump_) {
|
|
aec_dump_->WriteRenderStreamMessage(src, input_config.num_frames(),
|
|
input_config.num_channels());
|
|
}
|
|
|
|
render_.render_audio->CopyFrom(src, input_config);
|
|
RETURN_ON_ERR(ProcessRenderStreamLocked());
|
|
if (submodule_states_.RenderMultiBandProcessingActive() ||
|
|
submodule_states_.RenderFullBandProcessingActive()) {
|
|
render_.render_audio->CopyTo(output_config, dest);
|
|
}
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::ProcessRenderStreamLocked() {
|
|
AudioBuffer* render_buffer = render_.render_audio.get(); // For brevity.
|
|
|
|
HandleRenderRuntimeSettings();
|
|
|
|
if (submodules_.render_pre_processor) {
|
|
submodules_.render_pre_processor->Process(render_buffer);
|
|
}
|
|
|
|
QueueNonbandedRenderAudio(render_buffer);
|
|
|
|
if (submodule_states_.RenderMultiBandSubModulesActive() &&
|
|
SampleRateSupportsMultiBand(
|
|
formats_.render_processing_format.sample_rate_hz())) {
|
|
render_buffer->SplitIntoFrequencyBands();
|
|
}
|
|
|
|
if (submodule_states_.RenderMultiBandSubModulesActive()) {
|
|
QueueBandedRenderAudio(render_buffer);
|
|
}
|
|
|
|
// TODO(peah): Perform the queuing inside QueueRenderAudiuo().
|
|
if (submodules_.echo_controller) {
|
|
submodules_.echo_controller->AnalyzeRender(render_buffer);
|
|
}
|
|
|
|
if (submodule_states_.RenderMultiBandProcessingActive() &&
|
|
SampleRateSupportsMultiBand(
|
|
formats_.render_processing_format.sample_rate_hz())) {
|
|
render_buffer->MergeFrequencyBands();
|
|
}
|
|
|
|
return kNoError;
|
|
}
|
|
|
|
int AudioProcessingImpl::set_stream_delay_ms(int delay) {
|
|
MutexLock lock(&mutex_capture_);
|
|
Error retval = kNoError;
|
|
capture_.was_stream_delay_set = true;
|
|
|
|
if (delay < 0) {
|
|
delay = 0;
|
|
retval = kBadStreamParameterWarning;
|
|
}
|
|
|
|
// TODO(ajm): the max is rather arbitrarily chosen; investigate.
|
|
if (delay > 500) {
|
|
delay = 500;
|
|
retval = kBadStreamParameterWarning;
|
|
}
|
|
|
|
capture_nonlocked_.stream_delay_ms = delay;
|
|
return retval;
|
|
}
|
|
|
|
bool AudioProcessingImpl::GetLinearAecOutput(
|
|
rtc::ArrayView<std::array<float, 160>> linear_output) const {
|
|
MutexLock lock(&mutex_capture_);
|
|
AudioBuffer* linear_aec_buffer = capture_.linear_aec_output.get();
|
|
|
|
RTC_DCHECK(linear_aec_buffer);
|
|
if (linear_aec_buffer) {
|
|
RTC_DCHECK_EQ(1, linear_aec_buffer->num_bands());
|
|
RTC_DCHECK_EQ(linear_output.size(), linear_aec_buffer->num_channels());
|
|
|
|
for (size_t ch = 0; ch < linear_aec_buffer->num_channels(); ++ch) {
|
|
RTC_DCHECK_EQ(linear_output[ch].size(), linear_aec_buffer->num_frames());
|
|
rtc::ArrayView<const float> channel_view =
|
|
rtc::ArrayView<const float>(linear_aec_buffer->channels_const()[ch],
|
|
linear_aec_buffer->num_frames());
|
|
std::copy(channel_view.begin(), channel_view.end(),
|
|
linear_output[ch].begin());
|
|
}
|
|
return true;
|
|
}
|
|
RTC_LOG(LS_ERROR) << "No linear AEC output available";
|
|
RTC_NOTREACHED();
|
|
return false;
|
|
}
|
|
|
|
int AudioProcessingImpl::stream_delay_ms() const {
|
|
// Used as callback from submodules, hence locking is not allowed.
|
|
return capture_nonlocked_.stream_delay_ms;
|
|
}
|
|
|
|
void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) {
|
|
MutexLock lock(&mutex_capture_);
|
|
capture_.key_pressed = key_pressed;
|
|
}
|
|
|
|
void AudioProcessingImpl::set_stream_analog_level(int level) {
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
|
|
if (submodules_.agc_manager) {
|
|
submodules_.agc_manager->set_stream_analog_level(level);
|
|
data_dumper_->DumpRaw("experimental_gain_control_set_stream_analog_level",
|
|
1, &level);
|
|
} else if (submodules_.gain_control) {
|
|
int error = submodules_.gain_control->set_stream_analog_level(level);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
} else {
|
|
capture_.cached_stream_analog_level_ = level;
|
|
}
|
|
}
|
|
|
|
int AudioProcessingImpl::recommended_stream_analog_level() const {
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
return recommended_stream_analog_level_locked();
|
|
}
|
|
|
|
int AudioProcessingImpl::recommended_stream_analog_level_locked() const {
|
|
if (submodules_.agc_manager) {
|
|
return submodules_.agc_manager->stream_analog_level();
|
|
} else if (submodules_.gain_control) {
|
|
return submodules_.gain_control->stream_analog_level();
|
|
} else {
|
|
return capture_.cached_stream_analog_level_;
|
|
}
|
|
}
|
|
|
|
bool AudioProcessingImpl::CreateAndAttachAecDump(const std::string& file_name,
|
|
int64_t max_log_size_bytes,
|
|
rtc::TaskQueue* worker_queue) {
|
|
std::unique_ptr<AecDump> aec_dump =
|
|
AecDumpFactory::Create(file_name, max_log_size_bytes, worker_queue);
|
|
if (!aec_dump) {
|
|
return false;
|
|
}
|
|
|
|
AttachAecDump(std::move(aec_dump));
|
|
return true;
|
|
}
|
|
|
|
bool AudioProcessingImpl::CreateAndAttachAecDump(FILE* handle,
|
|
int64_t max_log_size_bytes,
|
|
rtc::TaskQueue* worker_queue) {
|
|
std::unique_ptr<AecDump> aec_dump =
|
|
AecDumpFactory::Create(handle, max_log_size_bytes, worker_queue);
|
|
if (!aec_dump) {
|
|
return false;
|
|
}
|
|
|
|
AttachAecDump(std::move(aec_dump));
|
|
return true;
|
|
}
|
|
|
|
void AudioProcessingImpl::AttachAecDump(std::unique_ptr<AecDump> aec_dump) {
|
|
RTC_DCHECK(aec_dump);
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
|
|
// The previously attached AecDump will be destroyed with the
|
|
// 'aec_dump' parameter, which is after locks are released.
|
|
aec_dump_.swap(aec_dump);
|
|
WriteAecDumpConfigMessage(true);
|
|
aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis());
|
|
}
|
|
|
|
void AudioProcessingImpl::DetachAecDump() {
|
|
// The d-tor of a task-queue based AecDump blocks until all pending
|
|
// tasks are done. This construction avoids blocking while holding
|
|
// the render and capture locks.
|
|
std::unique_ptr<AecDump> aec_dump = nullptr;
|
|
{
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
aec_dump = std::move(aec_dump_);
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::MutateConfig(
|
|
rtc::FunctionView<void(AudioProcessing::Config*)> mutator) {
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
mutator(&config_);
|
|
ApplyConfig(config_);
|
|
}
|
|
|
|
AudioProcessing::Config AudioProcessingImpl::GetConfig() const {
|
|
MutexLock lock_render(&mutex_render_);
|
|
MutexLock lock_capture(&mutex_capture_);
|
|
return config_;
|
|
}
|
|
|
|
bool AudioProcessingImpl::UpdateActiveSubmoduleStates() {
|
|
return submodule_states_.Update(
|
|
config_.high_pass_filter.enabled, !!submodules_.echo_control_mobile,
|
|
config_.residual_echo_detector.enabled, !!submodules_.noise_suppressor,
|
|
!!submodules_.gain_control, !!submodules_.gain_controller2,
|
|
config_.pre_amplifier.enabled, capture_nonlocked_.echo_controller_enabled,
|
|
config_.voice_detection.enabled, !!submodules_.transient_suppressor);
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeTransientSuppressor() {
|
|
if (config_.transient_suppression.enabled) {
|
|
// Attempt to create a transient suppressor, if one is not already created.
|
|
if (!submodules_.transient_suppressor) {
|
|
submodules_.transient_suppressor =
|
|
CreateTransientSuppressor(submodule_creation_overrides_);
|
|
}
|
|
if (submodules_.transient_suppressor) {
|
|
submodules_.transient_suppressor->Initialize(
|
|
proc_fullband_sample_rate_hz(), capture_nonlocked_.split_rate,
|
|
num_proc_channels());
|
|
} else {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "No transient suppressor created (probably disabled)";
|
|
}
|
|
} else {
|
|
submodules_.transient_suppressor.reset();
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeHighPassFilter(bool forced_reset) {
|
|
bool high_pass_filter_needed_by_aec =
|
|
config_.echo_canceller.enabled &&
|
|
config_.echo_canceller.enforce_high_pass_filtering &&
|
|
!config_.echo_canceller.mobile_mode;
|
|
if (submodule_states_.HighPassFilteringRequired() ||
|
|
high_pass_filter_needed_by_aec) {
|
|
bool use_full_band = config_.high_pass_filter.apply_in_full_band &&
|
|
!constants_.enforce_split_band_hpf;
|
|
int rate = use_full_band ? proc_fullband_sample_rate_hz()
|
|
: proc_split_sample_rate_hz();
|
|
size_t num_channels =
|
|
use_full_band ? num_output_channels() : num_proc_channels();
|
|
|
|
if (!submodules_.high_pass_filter ||
|
|
rate != submodules_.high_pass_filter->sample_rate_hz() ||
|
|
forced_reset ||
|
|
num_channels != submodules_.high_pass_filter->num_channels()) {
|
|
submodules_.high_pass_filter.reset(
|
|
new HighPassFilter(rate, num_channels));
|
|
}
|
|
} else {
|
|
submodules_.high_pass_filter.reset();
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeVoiceDetector() {
|
|
if (config_.voice_detection.enabled) {
|
|
submodules_.voice_detector = std::make_unique<VoiceDetection>(
|
|
proc_split_sample_rate_hz(), VoiceDetection::kVeryLowLikelihood);
|
|
} else {
|
|
submodules_.voice_detector.reset();
|
|
}
|
|
}
|
|
void AudioProcessingImpl::InitializeEchoController() {
|
|
bool use_echo_controller =
|
|
echo_control_factory_ ||
|
|
(config_.echo_canceller.enabled && !config_.echo_canceller.mobile_mode);
|
|
|
|
if (use_echo_controller) {
|
|
// Create and activate the echo controller.
|
|
if (echo_control_factory_) {
|
|
submodules_.echo_controller = echo_control_factory_->Create(
|
|
proc_sample_rate_hz(), num_reverse_channels(), num_proc_channels());
|
|
RTC_DCHECK(submodules_.echo_controller);
|
|
} else {
|
|
EchoCanceller3Config config =
|
|
use_setup_specific_default_aec3_config_
|
|
? EchoCanceller3::CreateDefaultConfig(num_reverse_channels(),
|
|
num_proc_channels())
|
|
: EchoCanceller3Config();
|
|
submodules_.echo_controller = std::make_unique<EchoCanceller3>(
|
|
config, proc_sample_rate_hz(), num_reverse_channels(),
|
|
num_proc_channels());
|
|
}
|
|
|
|
// Setup the storage for returning the linear AEC output.
|
|
if (config_.echo_canceller.export_linear_aec_output) {
|
|
constexpr int kLinearOutputRateHz = 16000;
|
|
capture_.linear_aec_output = std::make_unique<AudioBuffer>(
|
|
kLinearOutputRateHz, num_proc_channels(), kLinearOutputRateHz,
|
|
num_proc_channels(), kLinearOutputRateHz, num_proc_channels());
|
|
} else {
|
|
capture_.linear_aec_output.reset();
|
|
}
|
|
|
|
capture_nonlocked_.echo_controller_enabled = true;
|
|
|
|
submodules_.echo_control_mobile.reset();
|
|
aecm_render_signal_queue_.reset();
|
|
return;
|
|
}
|
|
|
|
submodules_.echo_controller.reset();
|
|
capture_nonlocked_.echo_controller_enabled = false;
|
|
capture_.linear_aec_output.reset();
|
|
|
|
if (!config_.echo_canceller.enabled) {
|
|
submodules_.echo_control_mobile.reset();
|
|
aecm_render_signal_queue_.reset();
|
|
return;
|
|
}
|
|
|
|
if (config_.echo_canceller.mobile_mode) {
|
|
// Create and activate AECM.
|
|
size_t max_element_size =
|
|
std::max(static_cast<size_t>(1),
|
|
kMaxAllowedValuesOfSamplesPerBand *
|
|
EchoControlMobileImpl::NumCancellersRequired(
|
|
num_output_channels(), num_reverse_channels()));
|
|
|
|
std::vector<int16_t> template_queue_element(max_element_size);
|
|
|
|
aecm_render_signal_queue_.reset(
|
|
new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>(
|
|
kMaxNumFramesToBuffer, template_queue_element,
|
|
RenderQueueItemVerifier<int16_t>(max_element_size)));
|
|
|
|
aecm_render_queue_buffer_.resize(max_element_size);
|
|
aecm_capture_queue_buffer_.resize(max_element_size);
|
|
|
|
submodules_.echo_control_mobile.reset(new EchoControlMobileImpl());
|
|
|
|
submodules_.echo_control_mobile->Initialize(proc_split_sample_rate_hz(),
|
|
num_reverse_channels(),
|
|
num_output_channels());
|
|
return;
|
|
}
|
|
|
|
submodules_.echo_control_mobile.reset();
|
|
aecm_render_signal_queue_.reset();
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeGainController1() {
|
|
if (!config_.gain_controller1.enabled) {
|
|
submodules_.agc_manager.reset();
|
|
submodules_.gain_control.reset();
|
|
return;
|
|
}
|
|
|
|
if (!submodules_.gain_control) {
|
|
submodules_.gain_control.reset(new GainControlImpl());
|
|
}
|
|
|
|
submodules_.gain_control->Initialize(num_proc_channels(),
|
|
proc_sample_rate_hz());
|
|
|
|
if (!config_.gain_controller1.analog_gain_controller.enabled) {
|
|
int error = submodules_.gain_control->set_mode(
|
|
Agc1ConfigModeToInterfaceMode(config_.gain_controller1.mode));
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
error = submodules_.gain_control->set_target_level_dbfs(
|
|
config_.gain_controller1.target_level_dbfs);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
error = submodules_.gain_control->set_compression_gain_db(
|
|
config_.gain_controller1.compression_gain_db);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
error = submodules_.gain_control->enable_limiter(
|
|
config_.gain_controller1.enable_limiter);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
error = submodules_.gain_control->set_analog_level_limits(
|
|
config_.gain_controller1.analog_level_minimum,
|
|
config_.gain_controller1.analog_level_maximum);
|
|
RTC_DCHECK_EQ(kNoError, error);
|
|
|
|
submodules_.agc_manager.reset();
|
|
return;
|
|
}
|
|
|
|
if (!submodules_.agc_manager.get() ||
|
|
submodules_.agc_manager->num_channels() !=
|
|
static_cast<int>(num_proc_channels()) ||
|
|
submodules_.agc_manager->sample_rate_hz() !=
|
|
capture_nonlocked_.split_rate) {
|
|
int stream_analog_level = -1;
|
|
const bool re_creation = !!submodules_.agc_manager;
|
|
if (re_creation) {
|
|
stream_analog_level = submodules_.agc_manager->stream_analog_level();
|
|
}
|
|
submodules_.agc_manager.reset(new AgcManagerDirect(
|
|
num_proc_channels(),
|
|
config_.gain_controller1.analog_gain_controller.startup_min_volume,
|
|
config_.gain_controller1.analog_gain_controller.clipped_level_min,
|
|
config_.gain_controller1.analog_gain_controller
|
|
.enable_agc2_level_estimator,
|
|
!config_.gain_controller1.analog_gain_controller
|
|
.enable_digital_adaptive,
|
|
capture_nonlocked_.split_rate));
|
|
if (re_creation) {
|
|
submodules_.agc_manager->set_stream_analog_level(stream_analog_level);
|
|
}
|
|
}
|
|
submodules_.agc_manager->Initialize();
|
|
submodules_.agc_manager->SetupDigitalGainControl(
|
|
submodules_.gain_control.get());
|
|
submodules_.agc_manager->SetCaptureMuted(capture_.output_will_be_muted);
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeGainController2() {
|
|
if (config_.gain_controller2.enabled) {
|
|
if (!submodules_.gain_controller2) {
|
|
// TODO(alessiob): Move the injected gain controller once injection is
|
|
// implemented.
|
|
submodules_.gain_controller2.reset(new GainController2());
|
|
}
|
|
|
|
submodules_.gain_controller2->Initialize(proc_fullband_sample_rate_hz());
|
|
submodules_.gain_controller2->ApplyConfig(config_.gain_controller2);
|
|
} else {
|
|
submodules_.gain_controller2.reset();
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeNoiseSuppressor() {
|
|
submodules_.noise_suppressor.reset();
|
|
|
|
if (config_.noise_suppression.enabled) {
|
|
auto map_level =
|
|
[](AudioProcessing::Config::NoiseSuppression::Level level) {
|
|
using NoiseSuppresionConfig =
|
|
AudioProcessing::Config::NoiseSuppression;
|
|
switch (level) {
|
|
case NoiseSuppresionConfig::kLow:
|
|
return NsConfig::SuppressionLevel::k6dB;
|
|
case NoiseSuppresionConfig::kModerate:
|
|
return NsConfig::SuppressionLevel::k12dB;
|
|
case NoiseSuppresionConfig::kHigh:
|
|
return NsConfig::SuppressionLevel::k18dB;
|
|
case NoiseSuppresionConfig::kVeryHigh:
|
|
return NsConfig::SuppressionLevel::k21dB;
|
|
default:
|
|
RTC_NOTREACHED();
|
|
}
|
|
};
|
|
|
|
NsConfig cfg;
|
|
cfg.target_level = map_level(config_.noise_suppression.level);
|
|
submodules_.noise_suppressor = std::make_unique<NoiseSuppressor>(
|
|
cfg, proc_sample_rate_hz(), num_proc_channels());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializePreAmplifier() {
|
|
if (config_.pre_amplifier.enabled) {
|
|
submodules_.pre_amplifier.reset(
|
|
new GainApplier(true, config_.pre_amplifier.fixed_gain_factor));
|
|
} else {
|
|
submodules_.pre_amplifier.reset();
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeResidualEchoDetector() {
|
|
RTC_DCHECK(submodules_.echo_detector);
|
|
submodules_.echo_detector->Initialize(
|
|
proc_fullband_sample_rate_hz(), 1,
|
|
formats_.render_processing_format.sample_rate_hz(), 1);
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializeAnalyzer() {
|
|
if (submodules_.capture_analyzer) {
|
|
submodules_.capture_analyzer->Initialize(proc_fullband_sample_rate_hz(),
|
|
num_proc_channels());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializePostProcessor() {
|
|
if (submodules_.capture_post_processor) {
|
|
submodules_.capture_post_processor->Initialize(
|
|
proc_fullband_sample_rate_hz(), num_proc_channels());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::InitializePreProcessor() {
|
|
if (submodules_.render_pre_processor) {
|
|
submodules_.render_pre_processor->Initialize(
|
|
formats_.render_processing_format.sample_rate_hz(),
|
|
formats_.render_processing_format.num_channels());
|
|
}
|
|
}
|
|
|
|
void AudioProcessingImpl::WriteAecDumpConfigMessage(bool forced) {
|
|
if (!aec_dump_) {
|
|
return;
|
|
}
|
|
|
|
std::string experiments_description = "";
|
|
// TODO(peah): Add semicolon-separated concatenations of experiment
|
|
// descriptions for other submodules.
|
|
if (config_.gain_controller1.analog_gain_controller.clipped_level_min !=
|
|
kClippedLevelMin) {
|
|
experiments_description += "AgcClippingLevelExperiment;";
|
|
}
|
|
if (!!submodules_.capture_post_processor) {
|
|
experiments_description += "CapturePostProcessor;";
|
|
}
|
|
if (!!submodules_.render_pre_processor) {
|
|
experiments_description += "RenderPreProcessor;";
|
|
}
|
|
if (capture_nonlocked_.echo_controller_enabled) {
|
|
experiments_description += "EchoController;";
|
|
}
|
|
if (config_.gain_controller2.enabled) {
|
|
experiments_description += "GainController2;";
|
|
}
|
|
|
|
InternalAPMConfig apm_config;
|
|
|
|
apm_config.aec_enabled = config_.echo_canceller.enabled;
|
|
apm_config.aec_delay_agnostic_enabled = false;
|
|
apm_config.aec_extended_filter_enabled = false;
|
|
apm_config.aec_suppression_level = 0;
|
|
|
|
apm_config.aecm_enabled = !!submodules_.echo_control_mobile;
|
|
apm_config.aecm_comfort_noise_enabled =
|
|
submodules_.echo_control_mobile &&
|
|
submodules_.echo_control_mobile->is_comfort_noise_enabled();
|
|
apm_config.aecm_routing_mode =
|
|
submodules_.echo_control_mobile
|
|
? static_cast<int>(submodules_.echo_control_mobile->routing_mode())
|
|
: 0;
|
|
|
|
apm_config.agc_enabled = !!submodules_.gain_control;
|
|
|
|
apm_config.agc_mode = submodules_.gain_control
|
|
? static_cast<int>(submodules_.gain_control->mode())
|
|
: GainControl::kAdaptiveAnalog;
|
|
apm_config.agc_limiter_enabled =
|
|
submodules_.gain_control ? submodules_.gain_control->is_limiter_enabled()
|
|
: false;
|
|
apm_config.noise_robust_agc_enabled = !!submodules_.agc_manager;
|
|
|
|
apm_config.hpf_enabled = config_.high_pass_filter.enabled;
|
|
|
|
apm_config.ns_enabled = config_.noise_suppression.enabled;
|
|
apm_config.ns_level = static_cast<int>(config_.noise_suppression.level);
|
|
|
|
apm_config.transient_suppression_enabled =
|
|
config_.transient_suppression.enabled;
|
|
apm_config.experiments_description = experiments_description;
|
|
apm_config.pre_amplifier_enabled = config_.pre_amplifier.enabled;
|
|
apm_config.pre_amplifier_fixed_gain_factor =
|
|
config_.pre_amplifier.fixed_gain_factor;
|
|
|
|
if (!forced && apm_config == apm_config_for_aec_dump_) {
|
|
return;
|
|
}
|
|
aec_dump_->WriteConfig(apm_config);
|
|
apm_config_for_aec_dump_ = apm_config;
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordUnprocessedCaptureStream(
|
|
const float* const* src) {
|
|
RTC_DCHECK(aec_dump_);
|
|
WriteAecDumpConfigMessage(false);
|
|
|
|
const size_t channel_size = formats_.api_format.input_stream().num_frames();
|
|
const size_t num_channels = formats_.api_format.input_stream().num_channels();
|
|
aec_dump_->AddCaptureStreamInput(
|
|
AudioFrameView<const float>(src, num_channels, channel_size));
|
|
RecordAudioProcessingState();
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordUnprocessedCaptureStream(
|
|
const int16_t* const data,
|
|
const StreamConfig& config) {
|
|
RTC_DCHECK(aec_dump_);
|
|
WriteAecDumpConfigMessage(false);
|
|
|
|
aec_dump_->AddCaptureStreamInput(data, config.num_channels(),
|
|
config.num_frames());
|
|
RecordAudioProcessingState();
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordProcessedCaptureStream(
|
|
const float* const* processed_capture_stream) {
|
|
RTC_DCHECK(aec_dump_);
|
|
|
|
const size_t channel_size = formats_.api_format.output_stream().num_frames();
|
|
const size_t num_channels =
|
|
formats_.api_format.output_stream().num_channels();
|
|
aec_dump_->AddCaptureStreamOutput(AudioFrameView<const float>(
|
|
processed_capture_stream, num_channels, channel_size));
|
|
aec_dump_->WriteCaptureStreamMessage();
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordProcessedCaptureStream(
|
|
const int16_t* const data,
|
|
const StreamConfig& config) {
|
|
RTC_DCHECK(aec_dump_);
|
|
|
|
aec_dump_->AddCaptureStreamOutput(data, config.num_channels(),
|
|
config.num_frames());
|
|
aec_dump_->WriteCaptureStreamMessage();
|
|
}
|
|
|
|
void AudioProcessingImpl::RecordAudioProcessingState() {
|
|
RTC_DCHECK(aec_dump_);
|
|
AecDump::AudioProcessingState audio_proc_state;
|
|
audio_proc_state.delay = capture_nonlocked_.stream_delay_ms;
|
|
audio_proc_state.drift = 0;
|
|
audio_proc_state.level = recommended_stream_analog_level_locked();
|
|
audio_proc_state.keypress = capture_.key_pressed;
|
|
aec_dump_->AddAudioProcessingState(audio_proc_state);
|
|
}
|
|
|
|
AudioProcessingImpl::ApmCaptureState::ApmCaptureState()
|
|
: was_stream_delay_set(false),
|
|
output_will_be_muted(false),
|
|
key_pressed(false),
|
|
capture_processing_format(kSampleRate16kHz),
|
|
split_rate(kSampleRate16kHz),
|
|
echo_path_gain_change(false),
|
|
prev_analog_mic_level(-1),
|
|
prev_pre_amp_gain(-1.f),
|
|
playout_volume(-1),
|
|
prev_playout_volume(-1) {}
|
|
|
|
AudioProcessingImpl::ApmCaptureState::~ApmCaptureState() = default;
|
|
|
|
void AudioProcessingImpl::ApmCaptureState::KeyboardInfo::Extract(
|
|
const float* const* data,
|
|
const StreamConfig& stream_config) {
|
|
if (stream_config.has_keyboard()) {
|
|
keyboard_data = data[stream_config.num_channels()];
|
|
} else {
|
|
keyboard_data = NULL;
|
|
}
|
|
num_keyboard_frames = stream_config.num_frames();
|
|
}
|
|
|
|
AudioProcessingImpl::ApmRenderState::ApmRenderState() = default;
|
|
|
|
AudioProcessingImpl::ApmRenderState::~ApmRenderState() = default;
|
|
|
|
AudioProcessingImpl::ApmStatsReporter::ApmStatsReporter()
|
|
: stats_message_queue_(1) {}
|
|
|
|
AudioProcessingImpl::ApmStatsReporter::~ApmStatsReporter() = default;
|
|
|
|
AudioProcessingStats AudioProcessingImpl::ApmStatsReporter::GetStatistics() {
|
|
MutexLock lock_stats(&mutex_stats_);
|
|
bool new_stats_available = stats_message_queue_.Remove(&cached_stats_);
|
|
// If the message queue is full, return the cached stats.
|
|
static_cast<void>(new_stats_available);
|
|
|
|
return cached_stats_;
|
|
}
|
|
|
|
void AudioProcessingImpl::ApmStatsReporter::UpdateStatistics(
|
|
const AudioProcessingStats& new_stats) {
|
|
AudioProcessingStats stats_to_queue = new_stats;
|
|
bool stats_message_passed = stats_message_queue_.Insert(&stats_to_queue);
|
|
// If the message queue is full, discard the new stats.
|
|
static_cast<void>(stats_message_passed);
|
|
}
|
|
|
|
} // namespace webrtc
|