Nagram/TMessagesProj/jni/webrtc/rtc_base/task_queue_win.cc
2020-08-14 19:58:22 +03:00

417 lines
12 KiB
C++

/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/task_queue_win.h"
// clang-format off
// clang formating would change include order.
// Include winsock2.h before including <windows.h> to maintain consistency with
// win32.h. To include win32.h directly, it must be broken out into its own
// build target.
#include <winsock2.h>
#include <windows.h>
#include <sal.h> // Must come after windows headers.
#include <mmsystem.h> // Must come after windows headers.
// clang-format on
#include <string.h>
#include <algorithm>
#include <memory>
#include <queue>
#include <utility>
#include "absl/strings/string_view.h"
#include "api/task_queue/queued_task.h"
#include "api/task_queue/task_queue_base.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/synchronization/mutex.h"
namespace webrtc {
namespace {
#define WM_RUN_TASK WM_USER + 1
#define WM_QUEUE_DELAYED_TASK WM_USER + 2
void CALLBACK InitializeQueueThread(ULONG_PTR param) {
MSG msg;
::PeekMessage(&msg, nullptr, WM_USER, WM_USER, PM_NOREMOVE);
rtc::Event* data = reinterpret_cast<rtc::Event*>(param);
data->Set();
}
rtc::ThreadPriority TaskQueuePriorityToThreadPriority(
TaskQueueFactory::Priority priority) {
switch (priority) {
case TaskQueueFactory::Priority::HIGH:
return rtc::kRealtimePriority;
case TaskQueueFactory::Priority::LOW:
return rtc::kLowPriority;
case TaskQueueFactory::Priority::NORMAL:
return rtc::kNormalPriority;
default:
RTC_NOTREACHED();
break;
}
return rtc::kNormalPriority;
}
int64_t GetTick() {
static const UINT kPeriod = 1;
bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR);
int64_t ret = rtc::TimeMillis();
if (high_res)
timeEndPeriod(kPeriod);
return ret;
}
class DelayedTaskInfo {
public:
// Default ctor needed to support priority_queue::pop().
DelayedTaskInfo() {}
DelayedTaskInfo(uint32_t milliseconds, std::unique_ptr<QueuedTask> task)
: due_time_(GetTick() + milliseconds), task_(std::move(task)) {}
DelayedTaskInfo(DelayedTaskInfo&&) = default;
// Implement for priority_queue.
bool operator>(const DelayedTaskInfo& other) const {
return due_time_ > other.due_time_;
}
// Required by priority_queue::pop().
DelayedTaskInfo& operator=(DelayedTaskInfo&& other) = default;
// See below for why this method is const.
void Run() const {
RTC_DCHECK(due_time_);
task_->Run() ? task_.reset() : static_cast<void>(task_.release());
}
int64_t due_time() const { return due_time_; }
private:
int64_t due_time_ = 0; // Absolute timestamp in milliseconds.
// |task| needs to be mutable because std::priority_queue::top() returns
// a const reference and a key in an ordered queue must not be changed.
// There are two basic workarounds, one using const_cast, which would also
// make the key (|due_time|), non-const and the other is to make the non-key
// (|task|), mutable.
// Because of this, the |task| variable is made private and can only be
// mutated by calling the |Run()| method.
mutable std::unique_ptr<QueuedTask> task_;
};
class MultimediaTimer {
public:
// Note: We create an event that requires manual reset.
MultimediaTimer() : event_(::CreateEvent(nullptr, true, false, nullptr)) {}
~MultimediaTimer() {
Cancel();
::CloseHandle(event_);
}
bool StartOneShotTimer(UINT delay_ms) {
RTC_DCHECK_EQ(0, timer_id_);
RTC_DCHECK(event_ != nullptr);
timer_id_ =
::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0,
TIME_ONESHOT | TIME_CALLBACK_EVENT_SET);
return timer_id_ != 0;
}
void Cancel() {
if (timer_id_) {
::timeKillEvent(timer_id_);
timer_id_ = 0;
}
// Now that timer is killed and not able to set the event, reset the event.
// Doing it in opposite order is racy because event may be set between
// event was reset and timer is killed leaving MultimediaTimer in surprising
// state where both event is set and timer is canceled.
::ResetEvent(event_);
}
HANDLE* event_for_wait() { return &event_; }
private:
HANDLE event_ = nullptr;
MMRESULT timer_id_ = 0;
RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer);
};
class TaskQueueWin : public TaskQueueBase {
public:
TaskQueueWin(absl::string_view queue_name, rtc::ThreadPriority priority);
~TaskQueueWin() override = default;
void Delete() override;
void PostTask(std::unique_ptr<QueuedTask> task) override;
void PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) override;
void RunPendingTasks();
private:
static void ThreadMain(void* context);
class WorkerThread : public rtc::PlatformThread {
public:
WorkerThread(rtc::ThreadRunFunction func,
void* obj,
absl::string_view thread_name,
rtc::ThreadPriority priority)
: PlatformThread(func, obj, thread_name, priority) {}
bool QueueAPC(PAPCFUNC apc_function, ULONG_PTR data) {
return rtc::PlatformThread::QueueAPC(apc_function, data);
}
};
void RunThreadMain();
bool ProcessQueuedMessages();
void RunDueTasks();
void ScheduleNextTimer();
void CancelTimers();
// Since priority_queue<> by defult orders items in terms of
// largest->smallest, using std::less<>, and we want smallest->largest,
// we would like to use std::greater<> here. Alas it's only available in
// C++14 and later, so we roll our own compare template that that relies on
// operator<().
template <typename T>
struct greater {
bool operator()(const T& l, const T& r) { return l > r; }
};
MultimediaTimer timer_;
std::priority_queue<DelayedTaskInfo,
std::vector<DelayedTaskInfo>,
greater<DelayedTaskInfo>>
timer_tasks_;
UINT_PTR timer_id_ = 0;
WorkerThread thread_;
Mutex pending_lock_;
std::queue<std::unique_ptr<QueuedTask>> pending_
RTC_GUARDED_BY(pending_lock_);
HANDLE in_queue_;
};
TaskQueueWin::TaskQueueWin(absl::string_view queue_name,
rtc::ThreadPriority priority)
: thread_(&TaskQueueWin::ThreadMain, this, queue_name, priority),
in_queue_(::CreateEvent(nullptr, true, false, nullptr)) {
RTC_DCHECK(in_queue_);
thread_.Start();
rtc::Event event(false, false);
RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread,
reinterpret_cast<ULONG_PTR>(&event)));
event.Wait(rtc::Event::kForever);
}
void TaskQueueWin::Delete() {
RTC_DCHECK(!IsCurrent());
while (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) {
RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError());
Sleep(1);
}
thread_.Stop();
::CloseHandle(in_queue_);
delete this;
}
void TaskQueueWin::PostTask(std::unique_ptr<QueuedTask> task) {
MutexLock lock(&pending_lock_);
pending_.push(std::move(task));
::SetEvent(in_queue_);
}
void TaskQueueWin::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
if (!milliseconds) {
PostTask(std::move(task));
return;
}
// TODO(tommi): Avoid this allocation. It is currently here since
// the timestamp stored in the task info object, is a 64bit timestamp
// and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the
// task pointer and timestamp as LPARAM and WPARAM.
auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task));
if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0,
reinterpret_cast<LPARAM>(task_info))) {
delete task_info;
}
}
void TaskQueueWin::RunPendingTasks() {
while (true) {
std::unique_ptr<QueuedTask> task;
{
MutexLock lock(&pending_lock_);
if (pending_.empty())
break;
task = std::move(pending_.front());
pending_.pop();
}
if (!task->Run())
task.release();
}
}
// static
void TaskQueueWin::ThreadMain(void* context) {
static_cast<TaskQueueWin*>(context)->RunThreadMain();
}
void TaskQueueWin::RunThreadMain() {
CurrentTaskQueueSetter set_current(this);
HANDLE handles[2] = {*timer_.event_for_wait(), in_queue_};
while (true) {
// Make sure we do an alertable wait as that's required to allow APCs to run
// (e.g. required for InitializeQueueThread and stopping the thread in
// PlatformThread).
DWORD result = ::MsgWaitForMultipleObjectsEx(
arraysize(handles), handles, INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE);
RTC_CHECK_NE(WAIT_FAILED, result);
if (result == (WAIT_OBJECT_0 + 2)) {
// There are messages in the message queue that need to be handled.
if (!ProcessQueuedMessages())
break;
}
if (result == WAIT_OBJECT_0 ||
(!timer_tasks_.empty() &&
::WaitForSingleObject(*timer_.event_for_wait(), 0) == WAIT_OBJECT_0)) {
// The multimedia timer was signaled.
timer_.Cancel();
RunDueTasks();
ScheduleNextTimer();
}
if (result == (WAIT_OBJECT_0 + 1)) {
::ResetEvent(in_queue_);
RunPendingTasks();
}
}
}
bool TaskQueueWin::ProcessQueuedMessages() {
MSG msg = {};
// To protect against overly busy message queues, we limit the time
// we process tasks to a few milliseconds. If we don't do that, there's
// a chance that timer tasks won't ever run.
static const int kMaxTaskProcessingTimeMs = 500;
auto start = GetTick();
while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
msg.message != WM_QUIT) {
if (!msg.hwnd) {
switch (msg.message) {
// TODO(tommi): Stop using this way of queueing tasks.
case WM_RUN_TASK: {
QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam);
if (task->Run())
delete task;
break;
}
case WM_QUEUE_DELAYED_TASK: {
std::unique_ptr<DelayedTaskInfo> info(
reinterpret_cast<DelayedTaskInfo*>(msg.lParam));
bool need_to_schedule_timers =
timer_tasks_.empty() ||
timer_tasks_.top().due_time() > info->due_time();
timer_tasks_.emplace(std::move(*info.get()));
if (need_to_schedule_timers) {
CancelTimers();
ScheduleNextTimer();
}
break;
}
case WM_TIMER: {
RTC_DCHECK_EQ(timer_id_, msg.wParam);
::KillTimer(nullptr, msg.wParam);
timer_id_ = 0;
RunDueTasks();
ScheduleNextTimer();
break;
}
default:
RTC_NOTREACHED();
break;
}
} else {
::TranslateMessage(&msg);
::DispatchMessage(&msg);
}
if (GetTick() > start + kMaxTaskProcessingTimeMs)
break;
}
return msg.message != WM_QUIT;
}
void TaskQueueWin::RunDueTasks() {
RTC_DCHECK(!timer_tasks_.empty());
auto now = GetTick();
do {
const auto& top = timer_tasks_.top();
if (top.due_time() > now)
break;
top.Run();
timer_tasks_.pop();
} while (!timer_tasks_.empty());
}
void TaskQueueWin::ScheduleNextTimer() {
RTC_DCHECK_EQ(timer_id_, 0);
if (timer_tasks_.empty())
return;
const auto& next_task = timer_tasks_.top();
int64_t delay_ms = std::max(0ll, next_task.due_time() - GetTick());
uint32_t milliseconds = rtc::dchecked_cast<uint32_t>(delay_ms);
if (!timer_.StartOneShotTimer(milliseconds))
timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr);
}
void TaskQueueWin::CancelTimers() {
timer_.Cancel();
if (timer_id_) {
::KillTimer(nullptr, timer_id_);
timer_id_ = 0;
}
}
class TaskQueueWinFactory : public TaskQueueFactory {
public:
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> CreateTaskQueue(
absl::string_view name,
Priority priority) const override {
return std::unique_ptr<TaskQueueBase, TaskQueueDeleter>(
new TaskQueueWin(name, TaskQueuePriorityToThreadPriority(priority)));
}
};
} // namespace
std::unique_ptr<TaskQueueFactory> CreateTaskQueueWinFactory() {
return std::make_unique<TaskQueueWinFactory>();
}
} // namespace webrtc