717 lines
26 KiB
C++
717 lines
26 KiB
C++
/*
|
|
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "video/adaptation/overuse_frame_detector.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "api/video/video_frame.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/exp_filter.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
|
|
#include <mach/mach.h>
|
|
#endif // defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
const int64_t kCheckForOveruseIntervalMs = 5000;
|
|
const int64_t kTimeToFirstCheckForOveruseMs = 100;
|
|
|
|
// Delay between consecutive rampups. (Used for quick recovery.)
|
|
const int kQuickRampUpDelayMs = 10 * 1000;
|
|
// Delay between rampup attempts. Initially uses standard, scales up to max.
|
|
const int kStandardRampUpDelayMs = 40 * 1000;
|
|
const int kMaxRampUpDelayMs = 240 * 1000;
|
|
// Expontential back-off factor, to prevent annoying up-down behaviour.
|
|
const double kRampUpBackoffFactor = 2.0;
|
|
|
|
// Max number of overuses detected before always applying the rampup delay.
|
|
const int kMaxOverusesBeforeApplyRampupDelay = 4;
|
|
|
|
// The maximum exponent to use in VCMExpFilter.
|
|
const float kMaxExp = 7.0f;
|
|
// Default value used before first reconfiguration.
|
|
const int kDefaultFrameRate = 30;
|
|
// Default sample diff, default frame rate.
|
|
const float kDefaultSampleDiffMs = 1000.0f / kDefaultFrameRate;
|
|
// A factor applied to the sample diff on OnTargetFramerateUpdated to determine
|
|
// a max limit for the sample diff. For instance, with a framerate of 30fps,
|
|
// the sample diff is capped to (1000 / 30) * 1.35 = 45ms. This prevents
|
|
// triggering too soon if there are individual very large outliers.
|
|
const float kMaxSampleDiffMarginFactor = 1.35f;
|
|
// Minimum framerate allowed for usage calculation. This prevents crazy long
|
|
// encode times from being accepted if the frame rate happens to be low.
|
|
const int kMinFramerate = 7;
|
|
const int kMaxFramerate = 30;
|
|
|
|
// Class for calculating the processing usage on the send-side (the average
|
|
// processing time of a frame divided by the average time difference between
|
|
// captured frames).
|
|
class SendProcessingUsage1 : public OveruseFrameDetector::ProcessingUsage {
|
|
public:
|
|
explicit SendProcessingUsage1(const CpuOveruseOptions& options)
|
|
: kWeightFactorFrameDiff(0.998f),
|
|
kWeightFactorProcessing(0.995f),
|
|
kInitialSampleDiffMs(40.0f),
|
|
options_(options),
|
|
count_(0),
|
|
last_processed_capture_time_us_(-1),
|
|
max_sample_diff_ms_(kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor),
|
|
filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)),
|
|
filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) {
|
|
Reset();
|
|
}
|
|
~SendProcessingUsage1() override {}
|
|
|
|
void Reset() override {
|
|
frame_timing_.clear();
|
|
count_ = 0;
|
|
last_processed_capture_time_us_ = -1;
|
|
max_sample_diff_ms_ = kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor;
|
|
filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
|
|
filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
|
|
filtered_processing_ms_->Reset(kWeightFactorProcessing);
|
|
filtered_processing_ms_->Apply(1.0f, InitialProcessingMs());
|
|
}
|
|
|
|
void SetMaxSampleDiffMs(float diff_ms) override {
|
|
max_sample_diff_ms_ = diff_ms;
|
|
}
|
|
|
|
void FrameCaptured(const VideoFrame& frame,
|
|
int64_t time_when_first_seen_us,
|
|
int64_t last_capture_time_us) override {
|
|
if (last_capture_time_us != -1)
|
|
AddCaptureSample(1e-3 * (time_when_first_seen_us - last_capture_time_us));
|
|
|
|
frame_timing_.push_back(FrameTiming(frame.timestamp_us(), frame.timestamp(),
|
|
time_when_first_seen_us));
|
|
}
|
|
|
|
absl::optional<int> FrameSent(
|
|
uint32_t timestamp,
|
|
int64_t time_sent_in_us,
|
|
int64_t /* capture_time_us */,
|
|
absl::optional<int> /* encode_duration_us */) override {
|
|
absl::optional<int> encode_duration_us;
|
|
// Delay before reporting actual encoding time, used to have the ability to
|
|
// detect total encoding time when encoding more than one layer. Encoding is
|
|
// here assumed to finish within a second (or that we get enough long-time
|
|
// samples before one second to trigger an overuse even when this is not the
|
|
// case).
|
|
static const int64_t kEncodingTimeMeasureWindowMs = 1000;
|
|
for (auto& it : frame_timing_) {
|
|
if (it.timestamp == timestamp) {
|
|
it.last_send_us = time_sent_in_us;
|
|
break;
|
|
}
|
|
}
|
|
// TODO(pbos): Handle the case/log errors when not finding the corresponding
|
|
// frame (either very slow encoding or incorrect wrong timestamps returned
|
|
// from the encoder).
|
|
// This is currently the case for all frames on ChromeOS, so logging them
|
|
// would be spammy, and triggering overuse would be wrong.
|
|
// https://crbug.com/350106
|
|
while (!frame_timing_.empty()) {
|
|
FrameTiming timing = frame_timing_.front();
|
|
if (time_sent_in_us - timing.capture_us <
|
|
kEncodingTimeMeasureWindowMs * rtc::kNumMicrosecsPerMillisec) {
|
|
break;
|
|
}
|
|
if (timing.last_send_us != -1) {
|
|
encode_duration_us.emplace(
|
|
static_cast<int>(timing.last_send_us - timing.capture_us));
|
|
|
|
if (last_processed_capture_time_us_ != -1) {
|
|
int64_t diff_us = timing.capture_us - last_processed_capture_time_us_;
|
|
AddSample(1e-3 * (*encode_duration_us), 1e-3 * diff_us);
|
|
}
|
|
last_processed_capture_time_us_ = timing.capture_us;
|
|
}
|
|
frame_timing_.pop_front();
|
|
}
|
|
return encode_duration_us;
|
|
}
|
|
|
|
int Value() override {
|
|
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
|
|
return static_cast<int>(InitialUsageInPercent() + 0.5f);
|
|
}
|
|
float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f);
|
|
frame_diff_ms = std::min(frame_diff_ms, max_sample_diff_ms_);
|
|
float encode_usage_percent =
|
|
100.0f * filtered_processing_ms_->filtered() / frame_diff_ms;
|
|
return static_cast<int>(encode_usage_percent + 0.5);
|
|
}
|
|
|
|
private:
|
|
struct FrameTiming {
|
|
FrameTiming(int64_t capture_time_us, uint32_t timestamp, int64_t now)
|
|
: capture_time_us(capture_time_us),
|
|
timestamp(timestamp),
|
|
capture_us(now),
|
|
last_send_us(-1) {}
|
|
int64_t capture_time_us;
|
|
uint32_t timestamp;
|
|
int64_t capture_us;
|
|
int64_t last_send_us;
|
|
};
|
|
|
|
void AddCaptureSample(float sample_ms) {
|
|
float exp = sample_ms / kDefaultSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_frame_diff_ms_->Apply(exp, sample_ms);
|
|
}
|
|
|
|
void AddSample(float processing_ms, int64_t diff_last_sample_ms) {
|
|
++count_;
|
|
float exp = diff_last_sample_ms / kDefaultSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_processing_ms_->Apply(exp, processing_ms);
|
|
}
|
|
|
|
float InitialUsageInPercent() const {
|
|
// Start in between the underuse and overuse threshold.
|
|
return (options_.low_encode_usage_threshold_percent +
|
|
options_.high_encode_usage_threshold_percent) /
|
|
2.0f;
|
|
}
|
|
|
|
float InitialProcessingMs() const {
|
|
return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
|
|
}
|
|
|
|
const float kWeightFactorFrameDiff;
|
|
const float kWeightFactorProcessing;
|
|
const float kInitialSampleDiffMs;
|
|
|
|
const CpuOveruseOptions options_;
|
|
std::list<FrameTiming> frame_timing_;
|
|
uint64_t count_;
|
|
int64_t last_processed_capture_time_us_;
|
|
float max_sample_diff_ms_;
|
|
std::unique_ptr<rtc::ExpFilter> filtered_processing_ms_;
|
|
std::unique_ptr<rtc::ExpFilter> filtered_frame_diff_ms_;
|
|
};
|
|
|
|
// New cpu load estimator.
|
|
// TODO(bugs.webrtc.org/8504): For some period of time, we need to
|
|
// switch between the two versions of the estimator for experiments.
|
|
// When problems are sorted out, the old estimator should be deleted.
|
|
class SendProcessingUsage2 : public OveruseFrameDetector::ProcessingUsage {
|
|
public:
|
|
explicit SendProcessingUsage2(const CpuOveruseOptions& options)
|
|
: options_(options) {
|
|
Reset();
|
|
}
|
|
~SendProcessingUsage2() override = default;
|
|
|
|
void Reset() override {
|
|
prev_time_us_ = -1;
|
|
// Start in between the underuse and overuse threshold.
|
|
load_estimate_ = (options_.low_encode_usage_threshold_percent +
|
|
options_.high_encode_usage_threshold_percent) /
|
|
200.0;
|
|
}
|
|
|
|
void SetMaxSampleDiffMs(float /* diff_ms */) override {}
|
|
|
|
void FrameCaptured(const VideoFrame& frame,
|
|
int64_t time_when_first_seen_us,
|
|
int64_t last_capture_time_us) override {}
|
|
|
|
absl::optional<int> FrameSent(
|
|
uint32_t /* timestamp */,
|
|
int64_t /* time_sent_in_us */,
|
|
int64_t capture_time_us,
|
|
absl::optional<int> encode_duration_us) override {
|
|
if (encode_duration_us) {
|
|
int duration_per_frame_us =
|
|
DurationPerInputFrame(capture_time_us, *encode_duration_us);
|
|
if (prev_time_us_ != -1) {
|
|
if (capture_time_us < prev_time_us_) {
|
|
// The weighting in AddSample assumes that samples are processed with
|
|
// non-decreasing measurement timestamps. We could implement
|
|
// appropriate weights for samples arriving late, but since it is a
|
|
// rare case, keep things simple, by just pushing those measurements a
|
|
// bit forward in time.
|
|
capture_time_us = prev_time_us_;
|
|
}
|
|
AddSample(1e-6 * duration_per_frame_us,
|
|
1e-6 * (capture_time_us - prev_time_us_));
|
|
}
|
|
}
|
|
prev_time_us_ = capture_time_us;
|
|
|
|
return encode_duration_us;
|
|
}
|
|
|
|
private:
|
|
void AddSample(double encode_time, double diff_time) {
|
|
RTC_CHECK_GE(diff_time, 0.0);
|
|
|
|
// Use the filter update
|
|
//
|
|
// load <-- x/d (1-exp (-d/T)) + exp (-d/T) load
|
|
//
|
|
// where we must take care for small d, using the proper limit
|
|
// (1 - exp(-d/tau)) / d = 1/tau - d/2tau^2 + O(d^2)
|
|
double tau = (1e-3 * options_.filter_time_ms);
|
|
double e = diff_time / tau;
|
|
double c;
|
|
if (e < 0.0001) {
|
|
c = (1 - e / 2) / tau;
|
|
} else {
|
|
c = -expm1(-e) / diff_time;
|
|
}
|
|
load_estimate_ = c * encode_time + exp(-e) * load_estimate_;
|
|
}
|
|
|
|
int64_t DurationPerInputFrame(int64_t capture_time_us,
|
|
int64_t encode_time_us) {
|
|
// Discard data on old frames; limit 2 seconds.
|
|
static constexpr int64_t kMaxAge = 2 * rtc::kNumMicrosecsPerSec;
|
|
for (auto it = max_encode_time_per_input_frame_.begin();
|
|
it != max_encode_time_per_input_frame_.end() &&
|
|
it->first < capture_time_us - kMaxAge;) {
|
|
it = max_encode_time_per_input_frame_.erase(it);
|
|
}
|
|
|
|
std::map<int64_t, int>::iterator it;
|
|
bool inserted;
|
|
std::tie(it, inserted) = max_encode_time_per_input_frame_.emplace(
|
|
capture_time_us, encode_time_us);
|
|
if (inserted) {
|
|
// First encoded frame for this input frame.
|
|
return encode_time_us;
|
|
}
|
|
if (encode_time_us <= it->second) {
|
|
// Shorter encode time than previous frame (unlikely). Count it as being
|
|
// done in parallel.
|
|
return 0;
|
|
}
|
|
// Record new maximum encode time, and return increase from previous max.
|
|
int increase = encode_time_us - it->second;
|
|
it->second = encode_time_us;
|
|
return increase;
|
|
}
|
|
|
|
int Value() override {
|
|
return static_cast<int>(100.0 * load_estimate_ + 0.5);
|
|
}
|
|
|
|
const CpuOveruseOptions options_;
|
|
// Indexed by the capture timestamp, used as frame id.
|
|
std::map<int64_t, int> max_encode_time_per_input_frame_;
|
|
|
|
int64_t prev_time_us_ = -1;
|
|
double load_estimate_;
|
|
};
|
|
|
|
// Class used for manual testing of overuse, enabled via field trial flag.
|
|
class OverdoseInjector : public OveruseFrameDetector::ProcessingUsage {
|
|
public:
|
|
OverdoseInjector(std::unique_ptr<OveruseFrameDetector::ProcessingUsage> usage,
|
|
int64_t normal_period_ms,
|
|
int64_t overuse_period_ms,
|
|
int64_t underuse_period_ms)
|
|
: usage_(std::move(usage)),
|
|
normal_period_ms_(normal_period_ms),
|
|
overuse_period_ms_(overuse_period_ms),
|
|
underuse_period_ms_(underuse_period_ms),
|
|
state_(State::kNormal),
|
|
last_toggling_ms_(-1) {
|
|
RTC_DCHECK_GT(overuse_period_ms, 0);
|
|
RTC_DCHECK_GT(normal_period_ms, 0);
|
|
RTC_LOG(LS_INFO) << "Simulating overuse with intervals " << normal_period_ms
|
|
<< "ms normal mode, " << overuse_period_ms
|
|
<< "ms overuse mode.";
|
|
}
|
|
|
|
~OverdoseInjector() override {}
|
|
|
|
void Reset() override { usage_->Reset(); }
|
|
|
|
void SetMaxSampleDiffMs(float diff_ms) override {
|
|
usage_->SetMaxSampleDiffMs(diff_ms);
|
|
}
|
|
|
|
void FrameCaptured(const VideoFrame& frame,
|
|
int64_t time_when_first_seen_us,
|
|
int64_t last_capture_time_us) override {
|
|
usage_->FrameCaptured(frame, time_when_first_seen_us, last_capture_time_us);
|
|
}
|
|
|
|
absl::optional<int> FrameSent(
|
|
// These two argument used by old estimator.
|
|
uint32_t timestamp,
|
|
int64_t time_sent_in_us,
|
|
// And these two by the new estimator.
|
|
int64_t capture_time_us,
|
|
absl::optional<int> encode_duration_us) override {
|
|
return usage_->FrameSent(timestamp, time_sent_in_us, capture_time_us,
|
|
encode_duration_us);
|
|
}
|
|
|
|
int Value() override {
|
|
int64_t now_ms = rtc::TimeMillis();
|
|
if (last_toggling_ms_ == -1) {
|
|
last_toggling_ms_ = now_ms;
|
|
} else {
|
|
switch (state_) {
|
|
case State::kNormal:
|
|
if (now_ms > last_toggling_ms_ + normal_period_ms_) {
|
|
state_ = State::kOveruse;
|
|
last_toggling_ms_ = now_ms;
|
|
RTC_LOG(LS_INFO) << "Simulating CPU overuse.";
|
|
}
|
|
break;
|
|
case State::kOveruse:
|
|
if (now_ms > last_toggling_ms_ + overuse_period_ms_) {
|
|
state_ = State::kUnderuse;
|
|
last_toggling_ms_ = now_ms;
|
|
RTC_LOG(LS_INFO) << "Simulating CPU underuse.";
|
|
}
|
|
break;
|
|
case State::kUnderuse:
|
|
if (now_ms > last_toggling_ms_ + underuse_period_ms_) {
|
|
state_ = State::kNormal;
|
|
last_toggling_ms_ = now_ms;
|
|
RTC_LOG(LS_INFO) << "Actual CPU overuse measurements in effect.";
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
absl::optional<int> overried_usage_value;
|
|
switch (state_) {
|
|
case State::kNormal:
|
|
break;
|
|
case State::kOveruse:
|
|
overried_usage_value.emplace(250);
|
|
break;
|
|
case State::kUnderuse:
|
|
overried_usage_value.emplace(5);
|
|
break;
|
|
}
|
|
|
|
return overried_usage_value.value_or(usage_->Value());
|
|
}
|
|
|
|
private:
|
|
const std::unique_ptr<OveruseFrameDetector::ProcessingUsage> usage_;
|
|
const int64_t normal_period_ms_;
|
|
const int64_t overuse_period_ms_;
|
|
const int64_t underuse_period_ms_;
|
|
enum class State { kNormal, kOveruse, kUnderuse } state_;
|
|
int64_t last_toggling_ms_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
CpuOveruseOptions::CpuOveruseOptions()
|
|
: high_encode_usage_threshold_percent(85),
|
|
frame_timeout_interval_ms(1500),
|
|
min_frame_samples(120),
|
|
min_process_count(3),
|
|
high_threshold_consecutive_count(2),
|
|
// Disabled by default.
|
|
filter_time_ms(0) {
|
|
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
|
|
// This is proof-of-concept code for letting the physical core count affect
|
|
// the interval into which we attempt to scale. For now, the code is Mac OS
|
|
// specific, since that's the platform were we saw most problems.
|
|
// TODO(torbjorng): Enhance SystemInfo to return this metric.
|
|
|
|
mach_port_t mach_host = mach_host_self();
|
|
host_basic_info hbi = {};
|
|
mach_msg_type_number_t info_count = HOST_BASIC_INFO_COUNT;
|
|
kern_return_t kr =
|
|
host_info(mach_host, HOST_BASIC_INFO, reinterpret_cast<host_info_t>(&hbi),
|
|
&info_count);
|
|
mach_port_deallocate(mach_task_self(), mach_host);
|
|
|
|
int n_physical_cores;
|
|
if (kr != KERN_SUCCESS) {
|
|
// If we couldn't get # of physical CPUs, don't panic. Assume we have 1.
|
|
n_physical_cores = 1;
|
|
RTC_LOG(LS_ERROR)
|
|
<< "Failed to determine number of physical cores, assuming 1";
|
|
} else {
|
|
n_physical_cores = hbi.physical_cpu;
|
|
RTC_LOG(LS_INFO) << "Number of physical cores:" << n_physical_cores;
|
|
}
|
|
|
|
// Change init list default for few core systems. The assumption here is that
|
|
// encoding, which we measure here, takes about 1/4 of the processing of a
|
|
// two-way call. This is roughly true for x86 using both vp8 and vp9 without
|
|
// hardware encoding. Since we don't affect the incoming stream here, we only
|
|
// control about 1/2 of the total processing needs, but this is not taken into
|
|
// account.
|
|
if (n_physical_cores == 1)
|
|
high_encode_usage_threshold_percent = 20; // Roughly 1/4 of 100%.
|
|
else if (n_physical_cores == 2)
|
|
high_encode_usage_threshold_percent = 40; // Roughly 1/4 of 200%.
|
|
#endif // defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
|
|
|
|
// Note that we make the interval 2x+epsilon wide, since libyuv scaling steps
|
|
// are close to that (when squared). This wide interval makes sure that
|
|
// scaling up or down does not jump all the way across the interval.
|
|
low_encode_usage_threshold_percent =
|
|
(high_encode_usage_threshold_percent - 1) / 2;
|
|
}
|
|
|
|
std::unique_ptr<OveruseFrameDetector::ProcessingUsage>
|
|
OveruseFrameDetector::CreateProcessingUsage(const CpuOveruseOptions& options) {
|
|
std::unique_ptr<ProcessingUsage> instance;
|
|
if (options.filter_time_ms > 0) {
|
|
instance = std::make_unique<SendProcessingUsage2>(options);
|
|
} else {
|
|
instance = std::make_unique<SendProcessingUsage1>(options);
|
|
}
|
|
std::string toggling_interval =
|
|
field_trial::FindFullName("WebRTC-ForceSimulatedOveruseIntervalMs");
|
|
if (!toggling_interval.empty()) {
|
|
int normal_period_ms = 0;
|
|
int overuse_period_ms = 0;
|
|
int underuse_period_ms = 0;
|
|
if (sscanf(toggling_interval.c_str(), "%d-%d-%d", &normal_period_ms,
|
|
&overuse_period_ms, &underuse_period_ms) == 3) {
|
|
if (normal_period_ms > 0 && overuse_period_ms > 0 &&
|
|
underuse_period_ms > 0) {
|
|
instance = std::make_unique<OverdoseInjector>(
|
|
std::move(instance), normal_period_ms, overuse_period_ms,
|
|
underuse_period_ms);
|
|
} else {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Invalid (non-positive) normal/overuse/underuse periods: "
|
|
<< normal_period_ms << " / " << overuse_period_ms << " / "
|
|
<< underuse_period_ms;
|
|
}
|
|
} else {
|
|
RTC_LOG(LS_WARNING) << "Malformed toggling interval: "
|
|
<< toggling_interval;
|
|
}
|
|
}
|
|
return instance;
|
|
}
|
|
|
|
OveruseFrameDetector::OveruseFrameDetector(
|
|
CpuOveruseMetricsObserver* metrics_observer)
|
|
: metrics_observer_(metrics_observer),
|
|
num_process_times_(0),
|
|
// TODO(nisse): Use absl::optional
|
|
last_capture_time_us_(-1),
|
|
num_pixels_(0),
|
|
max_framerate_(kDefaultFrameRate),
|
|
last_overuse_time_ms_(-1),
|
|
checks_above_threshold_(0),
|
|
num_overuse_detections_(0),
|
|
last_rampup_time_ms_(-1),
|
|
in_quick_rampup_(false),
|
|
current_rampup_delay_ms_(kStandardRampUpDelayMs) {
|
|
task_checker_.Detach();
|
|
ParseFieldTrial({&filter_time_constant_},
|
|
field_trial::FindFullName("WebRTC-CpuLoadEstimator"));
|
|
}
|
|
|
|
OveruseFrameDetector::~OveruseFrameDetector() {}
|
|
|
|
void OveruseFrameDetector::StartCheckForOveruse(
|
|
TaskQueueBase* task_queue_base,
|
|
const CpuOveruseOptions& options,
|
|
OveruseFrameDetectorObserverInterface* overuse_observer) {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
RTC_DCHECK(!check_overuse_task_.Running());
|
|
RTC_DCHECK(overuse_observer != nullptr);
|
|
|
|
SetOptions(options);
|
|
check_overuse_task_ = RepeatingTaskHandle::DelayedStart(
|
|
task_queue_base, TimeDelta::Millis(kTimeToFirstCheckForOveruseMs),
|
|
[this, overuse_observer] {
|
|
CheckForOveruse(overuse_observer);
|
|
return TimeDelta::Millis(kCheckForOveruseIntervalMs);
|
|
});
|
|
}
|
|
void OveruseFrameDetector::StopCheckForOveruse() {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
check_overuse_task_.Stop();
|
|
}
|
|
|
|
void OveruseFrameDetector::EncodedFrameTimeMeasured(int encode_duration_ms) {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
encode_usage_percent_ = usage_->Value();
|
|
|
|
metrics_observer_->OnEncodedFrameTimeMeasured(encode_duration_ms,
|
|
*encode_usage_percent_);
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
if (num_pixels != num_pixels_) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now_us) const {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
if (last_capture_time_us_ == -1)
|
|
return false;
|
|
return (now_us - last_capture_time_us_) >
|
|
options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec;
|
|
}
|
|
|
|
void OveruseFrameDetector::ResetAll(int num_pixels) {
|
|
// Reset state, as a result resolution being changed. Do not however change
|
|
// the current frame rate back to the default.
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
num_pixels_ = num_pixels;
|
|
usage_->Reset();
|
|
last_capture_time_us_ = -1;
|
|
num_process_times_ = 0;
|
|
encode_usage_percent_ = absl::nullopt;
|
|
OnTargetFramerateUpdated(max_framerate_);
|
|
}
|
|
|
|
void OveruseFrameDetector::OnTargetFramerateUpdated(int framerate_fps) {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
RTC_DCHECK_GE(framerate_fps, 0);
|
|
max_framerate_ = std::min(kMaxFramerate, framerate_fps);
|
|
usage_->SetMaxSampleDiffMs((1000 / std::max(kMinFramerate, max_framerate_)) *
|
|
kMaxSampleDiffMarginFactor);
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameCaptured(const VideoFrame& frame,
|
|
int64_t time_when_first_seen_us) {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
|
|
if (FrameSizeChanged(frame.width() * frame.height()) ||
|
|
FrameTimeoutDetected(time_when_first_seen_us)) {
|
|
ResetAll(frame.width() * frame.height());
|
|
}
|
|
|
|
usage_->FrameCaptured(frame, time_when_first_seen_us, last_capture_time_us_);
|
|
last_capture_time_us_ = time_when_first_seen_us;
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameSent(uint32_t timestamp,
|
|
int64_t time_sent_in_us,
|
|
int64_t capture_time_us,
|
|
absl::optional<int> encode_duration_us) {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
encode_duration_us = usage_->FrameSent(timestamp, time_sent_in_us,
|
|
capture_time_us, encode_duration_us);
|
|
|
|
if (encode_duration_us) {
|
|
EncodedFrameTimeMeasured(*encode_duration_us /
|
|
rtc::kNumMicrosecsPerMillisec);
|
|
}
|
|
}
|
|
|
|
void OveruseFrameDetector::CheckForOveruse(
|
|
OveruseFrameDetectorObserverInterface* observer) {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
RTC_DCHECK(observer);
|
|
++num_process_times_;
|
|
if (num_process_times_ <= options_.min_process_count ||
|
|
!encode_usage_percent_)
|
|
return;
|
|
|
|
int64_t now_ms = rtc::TimeMillis();
|
|
|
|
if (IsOverusing(*encode_usage_percent_)) {
|
|
// If the last thing we did was going up, and now have to back down, we need
|
|
// to check if this peak was short. If so we should back off to avoid going
|
|
// back and forth between this load, the system doesn't seem to handle it.
|
|
bool check_for_backoff = last_rampup_time_ms_ > last_overuse_time_ms_;
|
|
if (check_for_backoff) {
|
|
if (now_ms - last_rampup_time_ms_ < kStandardRampUpDelayMs ||
|
|
num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) {
|
|
// Going up was not ok for very long, back off.
|
|
current_rampup_delay_ms_ *= kRampUpBackoffFactor;
|
|
if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
|
|
current_rampup_delay_ms_ = kMaxRampUpDelayMs;
|
|
} else {
|
|
// Not currently backing off, reset rampup delay.
|
|
current_rampup_delay_ms_ = kStandardRampUpDelayMs;
|
|
}
|
|
}
|
|
|
|
last_overuse_time_ms_ = now_ms;
|
|
in_quick_rampup_ = false;
|
|
checks_above_threshold_ = 0;
|
|
++num_overuse_detections_;
|
|
|
|
observer->AdaptDown();
|
|
} else if (IsUnderusing(*encode_usage_percent_, now_ms)) {
|
|
last_rampup_time_ms_ = now_ms;
|
|
in_quick_rampup_ = true;
|
|
|
|
observer->AdaptUp();
|
|
}
|
|
|
|
int rampup_delay =
|
|
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
|
|
RTC_LOG(LS_VERBOSE) << " Frame stats: "
|
|
" encode usage "
|
|
<< *encode_usage_percent_ << " overuse detections "
|
|
<< num_overuse_detections_ << " rampup delay "
|
|
<< rampup_delay;
|
|
}
|
|
|
|
void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
options_ = options;
|
|
|
|
// Time constant config overridable by field trial.
|
|
if (filter_time_constant_) {
|
|
options_.filter_time_ms = filter_time_constant_->ms();
|
|
}
|
|
// Force reset with next frame.
|
|
num_pixels_ = 0;
|
|
usage_ = CreateProcessingUsage(options);
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsOverusing(int usage_percent) {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
|
|
if (usage_percent >= options_.high_encode_usage_threshold_percent) {
|
|
++checks_above_threshold_;
|
|
} else {
|
|
checks_above_threshold_ = 0;
|
|
}
|
|
return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsUnderusing(int usage_percent, int64_t time_now) {
|
|
RTC_DCHECK_RUN_ON(&task_checker_);
|
|
int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
if (time_now < last_rampup_time_ms_ + delay)
|
|
return false;
|
|
|
|
return usage_percent < options_.low_encode_usage_threshold_percent;
|
|
}
|
|
} // namespace webrtc
|