271 lines
7.5 KiB
C++
271 lines
7.5 KiB
C++
/*
|
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#if defined(WEBRTC_POSIX)
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
#include <sys/timeb.h>
|
|
#endif
|
|
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "rtc_base/system_time.h"
|
|
#include "rtc_base/time_utils.h"
|
|
|
|
namespace rtc {
|
|
|
|
ClockInterface* g_clock = nullptr;
|
|
|
|
ClockInterface* SetClockForTesting(ClockInterface* clock) {
|
|
ClockInterface* prev = g_clock;
|
|
g_clock = clock;
|
|
return prev;
|
|
}
|
|
|
|
ClockInterface* GetClockForTesting() {
|
|
return g_clock;
|
|
}
|
|
|
|
#if defined(WINUWP)
|
|
|
|
namespace {
|
|
|
|
class TimeHelper final {
|
|
public:
|
|
TimeHelper(const TimeHelper&) = delete;
|
|
|
|
// Resets the clock based upon an NTP server. This routine must be called
|
|
// prior to the main system start-up to ensure all clocks are based upon
|
|
// an NTP server time if NTP synchronization is required. No critical
|
|
// section is used thus this method must be called prior to any clock
|
|
// routines being used.
|
|
static void SyncWithNtp(int64_t ntp_server_time_ms) {
|
|
auto& singleton = Singleton();
|
|
TIME_ZONE_INFORMATION time_zone;
|
|
GetTimeZoneInformation(&time_zone);
|
|
int64_t time_zone_bias_ns =
|
|
rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
|
|
singleton.app_start_time_ns_ =
|
|
(ntp_server_time_ms - kNTPTimeToUnixTimeEpochOffset) * 1000000 -
|
|
time_zone_bias_ns;
|
|
singleton.UpdateReferenceTime();
|
|
}
|
|
|
|
// Returns the number of nanoseconds that have passed since unix epoch.
|
|
static int64_t TicksNs() {
|
|
auto& singleton = Singleton();
|
|
int64_t result = 0;
|
|
LARGE_INTEGER qpcnt;
|
|
QueryPerformanceCounter(&qpcnt);
|
|
result = rtc::dchecked_cast<int64_t>(
|
|
(rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
|
|
rtc::dchecked_cast<uint64_t>(singleton.os_ticks_per_second_)) *
|
|
10000);
|
|
result = singleton.app_start_time_ns_ + result -
|
|
singleton.time_since_os_start_ns_;
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
TimeHelper() {
|
|
TIME_ZONE_INFORMATION time_zone;
|
|
GetTimeZoneInformation(&time_zone);
|
|
int64_t time_zone_bias_ns =
|
|
rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
|
|
FILETIME ft;
|
|
// This will give us system file in UTC format.
|
|
GetSystemTimeAsFileTime(&ft);
|
|
LARGE_INTEGER li;
|
|
li.HighPart = ft.dwHighDateTime;
|
|
li.LowPart = ft.dwLowDateTime;
|
|
|
|
app_start_time_ns_ = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) * 100 -
|
|
time_zone_bias_ns;
|
|
|
|
UpdateReferenceTime();
|
|
}
|
|
|
|
static TimeHelper& Singleton() {
|
|
static TimeHelper singleton;
|
|
return singleton;
|
|
}
|
|
|
|
void UpdateReferenceTime() {
|
|
LARGE_INTEGER qpfreq;
|
|
QueryPerformanceFrequency(&qpfreq);
|
|
os_ticks_per_second_ = rtc::dchecked_cast<int64_t>(qpfreq.QuadPart);
|
|
|
|
LARGE_INTEGER qpcnt;
|
|
QueryPerformanceCounter(&qpcnt);
|
|
time_since_os_start_ns_ = rtc::dchecked_cast<int64_t>(
|
|
(rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
|
|
rtc::dchecked_cast<uint64_t>(os_ticks_per_second_)) *
|
|
10000);
|
|
}
|
|
|
|
private:
|
|
static constexpr uint64_t kFileTimeToUnixTimeEpochOffset =
|
|
116444736000000000ULL;
|
|
static constexpr uint64_t kNTPTimeToUnixTimeEpochOffset = 2208988800000L;
|
|
|
|
// The number of nanoseconds since unix system epoch
|
|
int64_t app_start_time_ns_;
|
|
// The number of nanoseconds since the OS started
|
|
int64_t time_since_os_start_ns_;
|
|
// The OS calculated ticks per second
|
|
int64_t os_ticks_per_second_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void SyncWithNtp(int64_t time_from_ntp_server_ms) {
|
|
TimeHelper::SyncWithNtp(time_from_ntp_server_ms);
|
|
}
|
|
|
|
int64_t WinUwpSystemTimeNanos() {
|
|
return TimeHelper::TicksNs();
|
|
}
|
|
|
|
#endif // defined(WINUWP)
|
|
|
|
int64_t SystemTimeMillis() {
|
|
return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec);
|
|
}
|
|
|
|
int64_t TimeNanos() {
|
|
if (g_clock) {
|
|
return g_clock->TimeNanos();
|
|
}
|
|
return SystemTimeNanos();
|
|
}
|
|
|
|
uint32_t Time32() {
|
|
return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
|
|
}
|
|
|
|
int64_t TimeMillis() {
|
|
return TimeNanos() / kNumNanosecsPerMillisec;
|
|
}
|
|
|
|
int64_t TimeMicros() {
|
|
return TimeNanos() / kNumNanosecsPerMicrosec;
|
|
}
|
|
|
|
int64_t TimeAfter(int64_t elapsed) {
|
|
RTC_DCHECK_GE(elapsed, 0);
|
|
return TimeMillis() + elapsed;
|
|
}
|
|
|
|
int32_t TimeDiff32(uint32_t later, uint32_t earlier) {
|
|
return later - earlier;
|
|
}
|
|
|
|
int64_t TimeDiff(int64_t later, int64_t earlier) {
|
|
return later - earlier;
|
|
}
|
|
|
|
TimestampWrapAroundHandler::TimestampWrapAroundHandler()
|
|
: last_ts_(0), num_wrap_(-1) {}
|
|
|
|
int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
|
|
if (num_wrap_ == -1) {
|
|
last_ts_ = ts;
|
|
num_wrap_ = 0;
|
|
return ts;
|
|
}
|
|
|
|
if (ts < last_ts_) {
|
|
if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff)
|
|
++num_wrap_;
|
|
} else if ((ts - last_ts_) > 0xf0000000) {
|
|
// Backwards wrap. Unwrap with last wrap count and don't update last_ts_.
|
|
return ts + (num_wrap_ - 1) * (int64_t{1} << 32);
|
|
}
|
|
|
|
last_ts_ = ts;
|
|
return ts + (num_wrap_ << 32);
|
|
}
|
|
|
|
int64_t TmToSeconds(const tm& tm) {
|
|
static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
|
static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151,
|
|
181, 212, 243, 273, 304, 334};
|
|
int year = tm.tm_year + 1900;
|
|
int month = tm.tm_mon;
|
|
int day = tm.tm_mday - 1; // Make 0-based like the rest.
|
|
int hour = tm.tm_hour;
|
|
int min = tm.tm_min;
|
|
int sec = tm.tm_sec;
|
|
|
|
bool expiry_in_leap_year =
|
|
(year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));
|
|
|
|
if (year < 1970)
|
|
return -1;
|
|
if (month < 0 || month > 11)
|
|
return -1;
|
|
if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
|
|
return -1;
|
|
if (hour < 0 || hour > 23)
|
|
return -1;
|
|
if (min < 0 || min > 59)
|
|
return -1;
|
|
if (sec < 0 || sec > 59)
|
|
return -1;
|
|
|
|
day += cumul_mdays[month];
|
|
|
|
// Add number of leap days between 1970 and the expiration year, inclusive.
|
|
day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
|
|
(year / 400 - 1970 / 400));
|
|
|
|
// We will have added one day too much above if expiration is during a leap
|
|
// year, and expiration is in January or February.
|
|
if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based.
|
|
day -= 1;
|
|
|
|
// Combine all variables into seconds from 1970-01-01 00:00 (except |month|
|
|
// which was accumulated into |day| above).
|
|
return (((static_cast<int64_t>(year - 1970) * 365 + day) * 24 + hour) * 60 +
|
|
min) *
|
|
60 +
|
|
sec;
|
|
}
|
|
|
|
int64_t TimeUTCMicros() {
|
|
if (g_clock) {
|
|
return g_clock->TimeNanos() / kNumNanosecsPerMicrosec;
|
|
}
|
|
#if defined(WEBRTC_POSIX)
|
|
struct timeval time;
|
|
gettimeofday(&time, nullptr);
|
|
// Convert from second (1.0) and microsecond (1e-6).
|
|
return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec +
|
|
time.tv_usec);
|
|
|
|
#elif defined(WEBRTC_WIN)
|
|
struct _timeb time;
|
|
_ftime(&time);
|
|
// Convert from second (1.0) and milliseconds (1e-3).
|
|
return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec +
|
|
static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec);
|
|
#endif
|
|
}
|
|
|
|
int64_t TimeUTCMillis() {
|
|
return TimeUTCMicros() / kNumMicrosecsPerMillisec;
|
|
}
|
|
|
|
} // namespace rtc
|